АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ «Электротехника и электроника»

по основной профессиональной образовательной программе по направлению подготовки 15.03.02 «Технологические машины и оборудование» (уровень бакалавриата)

Направленность (профиль): Цифровые технологии в формообразовании изделий **Общий объем дисциплины** – 3 з.е. (108 часов)

Форма промежуточной аттестации – Зачет.

- В результате освоения дисциплины у обучающихся должны быть сформированы компетенции с соответствующими индикаторами их достижения:
- ОПК-7.2: Обосновывает применение (использование) энергетических ресурсов в машиностроении;

Содержание дисциплины:

Дисциплина «Электротехника и электроника» включает в себя следующие разделы:

Форма обучения очная. Семестр 4.

1. Лекция 1 Тема 1 Электрические цепи постоянного тока. Введение. Определение предмета. Электрическая энергия, её особенности и области применения. Роль электротехники, электроники, микропроцессорной техники в совре-менных технологиях. Развитие комплексной автоматизации и систем управления произ-водственных процессов. Связь со специальностью. Содержание и структура дисциплины. Понятие об электрических, магнитных цепях, их графическое изображение. Простые цепи постоянного тока.

Линейные электрические цепи постоянного тока. Структура электрической цепи. Графические обоз¬начения электротехнических устройств постоянного тока. Схемы заме-щения электротехнических устройств. Линейные неразветвленные и разветвленные элек-трические цепи с одним источником э.д.с. Энергетический баланс в электрических цепях. Понятия о потенциальных диаграммах.

Анализ электрического состояния неразветвленных и разветвленных линейных электрических цепей с несколькими источниками ЭДС путем непосредственного применения законов Кирхгофа. Методы расчета сложных электрических цепей: метод контурных токов, метод двух узлов, метод наложения, метод эквивалентного генератора..

2. Лекция **2** Тема **2** Однофазные электрические цепи переменного синусоидального тока. Однофазные электрические цепи синусоидального тока. Определение, преимуще-ства, недостатки синусоидального тока. Основные параметры, характеризующие синусоидальный ток, напряжение, э.д.с., изображение синусоидальных величин. Условные графические обозначения. Законы Ома и Кирхгофа для цепей синусоидального тока. Электрические цепи с R, C, L – элементами.

Символический метод. Применение комплексной плоскости, преобразование Эйлера для расчета цепей синусоидального тока. Активное, реактивное и полное сопротивление в цепях с последовательным соединением элементов. Треугольники напряжений, сопротивлений. Векторные диаграммы, фазовые соотношения между токами и напряжениями. Мгновенная мощность элементов цепи. Активная, реактивная, полная мощности. Треугольник мощностей, коэффициент мощности. Резонанс напряжений, условия его возникновения и практическое значение..

3. Лекция 3 Тема 2 Однофазные электрические цепи переменного синусоидального тока. Тема 3 Трехфазные электрические цепи переменного тока. Цепи с параллельным соединением ветвей. Уравнения электрического состояния цепи. Векторные диаграммы. Активная, реактивная и полная мощности. Треугольники токов, проводимостей, мощностей. Коэффициент мощности и его значение. Резонанс то-ков, условия его возникновения. Компенсация реактивной мощности для повышения коэффициента мощности. Применение комплексной плоскости и комплексных чисел, преобразование Эйлера для расчета цепей синусоидального тока.

Трехфазные электрические цепи. Понятие и основные элементы многофазной цепи. Трехфазная цепь. Трехфазный генератор. Трехпроводная и четырехпроводная цепи. Фазное и линейное напряжение. Классификация и способы включения нагрузки в трехфазную цепь. Симметричные режимы трехфазной цепи. Соединение элементов трехфазной цепи звездой и треугольником.

Соотношения между фазными и линейными напряжениями и токами при симметричных нагрузках. Соотношения мощностей при соединении нагрузки по схемам треугольник и звезда при одинаковых линейных напряжениях. Соотношения линейных напряжений при одинаковых потребляемых мощностях при соединении нагрузки по схемам звезда и треугольник. Несимметричные режимы в трехпроводной и четырехпроводной цепях. Назначение нейтрального провода. Примеры несимметричных режимов в трехфазных цепях. Мощность трехфазной цепи. Коэффициент мощности симметричных трехфазных приёмников и способы его повышения. Вращающееся магнитное поле образуемое трехфазным током..

4. Лекция 4 Тема 4 Нелинейные электрические цепи. Тема 5 Магнитные цепи. Тема 6 Электромагнитные устройства и трансформаторы. Нелинейные цепи переменного тока. Выпрямители и преобразователи синусоидального напряжения. Параметрический стабилизатор напряжения Нелинейные цепи при одновременном воздействии источников постоянного и переменного напряжений. Характеристики нелинейных элементов, дифференциальные параметры, неуправляемые управляемые нелинейные И элементы. Графические методы расчета нелинейных электрических цепей

Магнитные цепи. Ферромагнитные материалы и их характеристики. Магнитные цепи постоянных магнитных потоков. Применение законов полного тока для анализа магнитных цепей. Магнитные цепи с воздушным зазором в магнитопроводе. Аналогия методов анализа электрических и магнитных цепей .Схемы замещения магнитных цепей. Расчет магнитных цепей с постоянными магнитами.

Магнитные цепи переменных потоков. Особенности электромагнитных процессов в катушке с магнитопроводом. Магнитные потери. Уравнение электрического состояния, вольт-амперная характеристика, векторная диаграмма, схема замещения катушки. Электромагнитные устройства: электромагниты, контакторы, реле и т.п. Их конструкции, принцип действия, характеристики, область применения.

Электромагнитные устройства: электромагниты, контакторы, реле и т.п. Их конструкции, принцип действия, характеристики, область применения (2 часа)

Трансформаторы. Назначение и области применения. Устройство и принцип действия однофазного трансформатора. Уравнения электрического И магнитного состояния трансформатора. Потери энергии в трансформаторе. Мощность трансформатора. Внешние характеристики. Коэффициент трансформации. Паспортные данные трансформаторов. Устройство, принцип действия и области применения автотрансформаторов. Подбор электротехнической аппаратуры и проверка соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам.

Устройство, принцип действия и области применения трехфазных трансформаторов. Понятие об основных группах соединений. Измерительные трансформаторы тока и напряжения. Условные графические обозначения, применяемые для изображения трансформаторов на электрических схемах..

5. Лекция **5** Тема **7** Электрические машины. Тема **8** Электропривод. Классификация области применения электрических машин. Машины постоянного тока. Устройство и принцип действия, режимы генератора и двигателя. Понятие о генераторах постоянного тока. Классификация, схемы, характеристики, области применения.

Двигатели постоянного тока. Способы возбуждения. Особенности пуска. Свойство саморегулирования. Механические и рабочие характеристики. Паспортные данные двигателей постоянного тока. Области применения.

Устройство и принцип действия асинхронного трехфазного двигателя. Уравнения электрического состояния цепей обмоток статора и ротора. Магнитное поле машины. Скольжение. Электромагнитный момент. Механические и рабочие характеристики. Энергетические диаграммы. Паспортные данные. Подключение трехфазного асинхронного двигателя. Реверсирование.

Устройство трехфазной синхронной машины. Принцип действия генератора и двигателя. Автономная работа синхронного генератора. Работа синхронной машины в режиме двигателя. Особенности пуска и способы пуска синхронного двигателя. Регулирование коэффициента мощности.

Основные понятия электропривода, структурная схема, действующие моменты вращения. Задачи

выбора двигателя. Нагревание и охлаждение двигателей. Номинальные режимы работы двигателей. Расчет мощности. Выбор типа и конструкции электродвигателя для длительного, кратковременного режимов эксплуатации. Методы средних потерь и эквивалентных величин. Принципы автоматизации. Аппараты управления. Системы защиты..

6. Лекция 6 Тема 8 Физические основы полупроводниковой электроники. Электроника, её роль в науке, технике. Классификация элементной базы современной электроники.

Электроника вакуумная и полупроводниковая. Полупроводник, виды и характеристики полупроводников. Электронно-дырочный переход. Технологические и конструктивные основы полупроводниковой электроники, применяемые в электронных блоках автомобилей и электромобилей.

Принципы действия, устройство, основные характеристики и области применения типичных полупроводниковых приборов: резисторов, диодов, транзисторов (биполярных и полевых), тиристоров, оптопар, интегральных схем.

Силовые электронные устройства (диоды, в том числе свето- и фотодиоды, транзисторы и тиристоры), особенности их устройства, работы и назначение..

7. Лекция 7 Тема 9 Аналоговая электроника. Аналоговое преобразование сигнала. Аналоговые электронные устройства. Усилители их назначение и классификация. Коэффициент усиления, амплитудно-частотные характеристики. Понятия об обратной связи. Операционные усилители. Генераторы аналоговых сигналов.

Электронные выпрямители, процессоры питания современных электронных устройств, их назначение, принцип действия, характеристики и параметры. Понятие о фильтрации. Полосовые, режекторные и сглаживающие фильтры..

8. Лекция **8 Тема 10 Цифровая электроника.** Основы цифровой электроники. Цифровое представление информации. Логические функции и логические элементы, таблицы истинности. Комбинированные логические элементы.

Особенности построения цифровых устройств на логических элементах. Синхронные и асинхронные триггеры, регистры, двоичные счетчики, преобразование десятичного кода в двоичный, дешифраторы, мультиплексоры, сумматоры и т.д. Микропроцессорные устройства и системы..

Разработал: старший преподаватель кафедры ЭиАЭП

М.В. Дорожкин

Проверил: Декан ЭФ

В.И. Полищук