Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФСТ С.В. Ананьин

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.О.24** «Детали машин и основы конструирования»

Код и наименование направления подготовки (специальности): 15.03.02

Технологические машины и оборудование

Направленность (профиль, специализация): Цифровые технологии в

формообразовании изделий

Статус дисциплины: обязательная часть

Форма обучения: очная

Статус	Должность	И.О. Фамилия
Разработал	доцент	А.М. Гвоздев
	Зав. кафедрой «ТиПМ»	В.И. Поддубный
Согласовал	руководитель направленности (профиля) программы	И.В. Марширов

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора
	Способен работать с нормативнотехнической документацией,	ОПК-5.1	Демонстрирует знание стандартов, норм и правил в профессиональной деятельности
деятельн	связанной с профессиональной деятельностью, с учетом стандартов, норм и правил	ОПК-5.2	Способен применять нормативно- техническую документацию при проектировании и конструировании технологических систем
ОПК-13	Способен применять стандартные методы расчета при	ОПК-13.1	Демонстрирует знание стандартных методов расчета и проектирования деталей и узлов технологических машин и оборудования
OHK-13	проектировании деталей и узлов технологических машин и оборудования	ОПК-13.2	Способен рассчитывать и проектировать детали и узлы технологических машин и оборудования с применением стандартных методов

2. Место дисциплины в структуре образовательной программы

Дисциплины (практи	ики),	Инженерная графика, Компьютерная графика,
предшествующие изуче	нию	Математика, Материаловедение, Физика
дисциплины, результ	гаты	
освоения которых необход	имы	
для освоения дан	ной	
дисциплины.		
Дисциплины (практики),	для	Диагностика, ремонт и монтаж машин и
которых результаты освое	ения	оборудования, Оборудование литейных цехов
данной дисциплины бу	удут	
необходимы, как вход	цные	
знания, умения и владения	для	
их изучения.		

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 7 / 252

	Виды занятий, их трудоемкость (час.)				Объем контактной
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
очная	32	16	16	188	87

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 5

Объем дисциплины в семестре з.е. /час: 3 / 108

Форма промежуточной аттестации: Зачет

Виды занятий, их трудоемкость (час.)				Объем контактной работы
Лекции	Лабораторные работы	Практические Самостоятельная занятия работа		обучающегося с преподавателем (час)
16	16	0	76	43

Лекционные занятия (16ч.)

- 1. Основы конструирования и расчета деталей и узлов транспортных машин {лекция с разбором конкретных ситуаций} (2ч.)[8,9,11,12,13] Предмет курса. Основные задачи курса. Определение понятий – машина, деталь, сборочная **у**зел. Классификация механизмов, единица, **УЗЛОВ** деталей машин. Классификация деталей машин по назначению: передачи, подшипники и направляющие, соединения, муфты, пружины, уплотнения, корпусные детали и т.п. Стадии разработки. Особенности расчета по этим критериям при статических и переменных нагрузках. Основные требования к деталям и узлам машин. Основные термины. Критерии работоспособности деталей машин. Понятия работоспособности, технологичности, экономичности, методы их оценки.
- 2. Механических привод транспортных машин: структура и основные характеристики передач {лекция с разбором конкретных ситуаций} (4ч.)[8,9,11,12,13] Назначение и структура механического привода. Основные характеристики привода. Назначение и классификация передач. Общие кинематические и силовые соотношения в механических передачах. Зубчатые эвольвентные передачи. Основные понятия о зубчатых передачах и основные определения. Цилиндрические зубчатые передачи с прямыми и косыми зубьями. Конструкция колес и шестерен цилиндрических зубчатых передач. Методы изготовления зубчатых передач. Материалы, термическая, химико-термическая обработка и др. виды упрочнений. Причины и виды выхода из строя зубчатых передач Основные параметры зубчатого зацепления. КПД зубчатых передач.
- 3. Расчет зубчатых цилиндрических передач приводов транспортных машин на контактную и изгибную прочность {лекция с разбором конкретных ситуаций} (2ч.)[8,9,10,12,13] Силы в зацеплениях. Определение расчетной нагрузки в зубчатых передачах. Режимы нагружения. Расчет зубчатых цилиндрических передач на контактную прочность. Расчет зубчатых цилиндрических передач на изгибную прочность. Расчетная модель и расчетные зависимости проектировочного и проверочного этапов расчета. Расчет зубьев

цилиндрических прямозубых передач на сопротивление усталости по изгибу. Номинальные напряжения. Местные напряжения. Коэффициент формы зуба. Расчетные зависимости для проектного и проверочного расчетов.

- 4. Конические и червячные зубчатые передачи приводов транспортных машин {лекция с разбором конкретных ситуаций} (2ч.)[8,9,10,12,13] Конические зубчатые передачи с прямолинейным и круговыми зубьями, их классификация, область применения. Геометрические и эксплуатационные особенности. Специфика прочностных расчетов. Червячные передачи. Области применения и классификация червячных передач. Геометрические параметры передач. Кинематика и КПД передач. Тепловой расчет. Искусственное охлаждение.
- **5. Цепные и ременные передачи {лекция с разбором конкретных ситуаций} (2ч.)[8,9,10,12,13]** Классификация цепных передачи и приводных цепей. Конструкция шарниров приводных цепей. Выбор основных параметров цепных передач, обеспечивающих требуемое качество, наименьшие затраты при изготовлении и эксплуатации. Критерии работоспособности цепных передач и последовательность расчета по условию ограничения изнашивания шарнира. Несущая способность и подбор цепей. Нагрузки на валы. Ременные передачи. Разновидности ременных передач. Геометрия и кинематика передачи. Тяговая способность и КПД передачи. Критерии работоспособности передач.
- 6. Валы и оси {лекция с разбором конкретных ситуаций} (2ч.)[8,9,10,12,13] Классификация валов и осей. Конструкции валов, основные закономерности в процессе изготовления, обеспечивающие требуемое качество и наименьшие затраты. Материалы и способы изготовления, обеспечивающие технологичность конструкции. Нагрузки на валы и расчетные схемы.] Критерии работоспособности и расчета валов и осей. Способы обеспечения качества изготовления. Последовательность проектировочного расчета и конструирования валов
- 7. Опоры валов и осей {лекция с разбором конкретных ситуаций} (2ч.)[8,9,11,12,13] Подшипники качения: конструкция, классификация, система обозначений. Сравнительная характеристика основных ТИПОВ подшипников. Точность и качество изготовления. Динамическая и статическая грузоподъемности подшипников. Конструкции подшипниковых плавающие и фиксирующие опоры. Расчет, подбор подшипников качения. Виды работоспособности повреждений критерии подшипников качения. Распределение нагрузки между телами качения. Контактные напряжения в подшипнике. Последовательность расчета, подбора подшипников качения по статической и динамической грузоподъемности.

Лабораторные работы (16ч.)

- **1.** Лабораторная работа №1(2ч.)[7] Изучение конструкции, системы условных обозначений характеристик основных типов подшипников качения.
- 2. Лабораторная работа №2(4ч.)[7] Зубчатые передачи цилиндрических

редукторов: конструкции и основные характеристики.

- **3.** Лабораторная работа №3(2ч.)[7] Червячные передачи редуктора: изучение геометрии и кинематики.
- **4.** Лабораторная работа №4(4ч.)[7] Конструкции подшипниковых узлов опор валов.
- **5.** Лабораторная работа №5(4ч.)[7] Распределение сил в затянутом резьбовом соединении, нагруженном внешней осевой силой.

Самостоятельная работа (76ч.)

- 1. Проработка теоретического материала, подготовка к текущим занятиям(33ч.)[2,5,6,7,8,9,11,12,13]
- 2. Подготовка к зачету, сдача зачета(27ч.)[8,9,11,12,13]
- 2. Подготовка к контрольному опросу(16ч.)[8,9,12,13]

Семестр: 6

Объем дисциплины в семестре з.е. /час: 4 / 144 Форма промежуточной аттестации: Экзамен

Виды занятий, их трудоемкость (час.)			Объем контактной работы	
Лекции	Лабораторные Практические работы занятия		Самостоятельная работа	обучающегося с преподавателем (час)
16	0	16	112	43

Лекционные занятия (16ч.)

- **1. Валы и оси редукторов машин {лекция с разбором конкретных ситуаций} (2ч.)[8,9,11,12,13]** Валы и оси. Классификация валов и осей. Конструкции и материалы. Требования к валам. Нагрузки на валы и расчетные схемы. Расчет на прочность. Расчет валов на выносливость, колебания. Особенности расчетов на прочность и жесткость валов редукторов. Гибкие валы.
- 2. Муфты {лекция с разбором конкретных ситуаций} (2ч.)[8,9,11,12,13] Муфты для соединения валов. Классификация муфт: постоянные, управляемые и самоуправляемые муфты. Амортизирующая и демпфирующая способность муфт. Постоянные муфты. Конструкция и расчет глухих, упругих и компенсирующих муфт. Сцепные управляемые муфты. Область применения. Самоуправляемые муфты. Предохранительные муфты с разрушающимися элементами, пружинно-кулачковые и фрикционные. Особенности конструкции и расчет. Обгонные муфты. Конструкции и расчет. Центробежные муфты.
- **3.** Классификация соединений {лекция с разбором конкретных ситуаций} (2ч.)[8,9,11,12,13] Классификация соединений. Соединения стержней, листов и корпусных деталей, соединение типа вал-ступица, соединение валов, соединение труб. Клеммовые соединения. Конструктивные исполнения. Области применения клеммовых соединений и их роль в современном машиностроении. Методика расчета для случая нагружения соединения: а) Крутящим моментом, б) осевой силой, в) изгибающим моментом.

- 4. Соединение типа вал-ступица {лекция с разбором конкретных ситуаций} (2ч.)[8,9,11,12,13] Соединение типа вал-ступица. Соединения деталей с натягом. Области машиностроении. Несущая применения В способность цилиндрических напряженных соединений при нагружении осевой силой, крутящим и изгибающим моментом. Расчет потребного натяга. Прочность сопрягаемых деталей. Зубчатые (шлицевые) соединения. Области применения. Прямобочные соединения. Способы центрирования. Расчет на прочность. Эвольвентные и треугольные соединения, расчет на прочность. Штифтовые соединения. Соединения цилиндрическими и коническими штифтами. Области применения и расчет на прочность. Основные типы шпонок: призматические, сегментные, цилиндрические, клиновые и специальные. Области применения. на шпоночные соединения. Расчет шпоночных соединений. Стандарты Допускаемые напряжения.
- **5.** Сварные соединения {лекция с разбором конкретных ситуаций} (2ч.)[8,9,11,12,13] Сварные соединения и их роль в машиностроении. Основные типы соединений дуговой сваркой: соединения стыковые, нахлесточные, тавровые, угловые. Расчет на прочность сварных швов. Допускаемые напряжения и запасы прочности. Расчеты на прочность при переменных напряжениях. Особенности конструирования сварных соединений.
- 6. Резьбовые соединения. Основные определения. Классификация {лекция с разбором конкретных ситуаций} (2ч.)[8,9,11,12,13] Резьба и ее элементы. Классификация резьб по назначению: крепежные резьбы, крепежно-уплотняющие резьбы, резьбы грузовых и ходовых (трансмиссионных) винтов. Классификация резьб по форме. Основные параметры резьб. КПД резьбы и условие самоторможения. Крепежные детали и типы соединений: болтом, винтом, шпилькой. Материалы крепежных деталей. Силы и моменты в резьбовом соединении при его затяжке. Контроль затяжки. Самоотвинчивание резьбовых соединений и способы стопорения резьбовых деталей. Распределение нагрузки между витками резьбы. Концентрация напряжений. Прочность стержня и головки болта (винта). Прочность витков резьбы.
- 7. Основные случаи нагружения и расчета соединения {лекция с разбором конкретных ситуаций} (2ч.)[8,9,11,12,13] Основные случаи нагружения и расчета соединения, состоящего из одиночного винта (болта, шпильки). Расчет соединения при действии усилия затяжки. Силы в затянутом соединении при действии внешней нагрузки.
- 8. Групповые резьбовые соединения {лекция с разбором конкретных ситуаций} (2ч.)[8,9,10] Групповые резьбовые соединения. Расчет их при действии сил и моментов перпендикулярно к плоскости стыка или в плоскости стыка, а также при произвольном направлении нагрузки. Выбор запасов прочности и допускаемых напряжений при расчете винтов в зависимости о условий работы, материала, технологии изготовления и монтажа.

- 1. Практическое занятие №1 {ПОПС (позиция, обоснование, пример, следствие) формула} (2ч.)[1,3,4] Выдача заданий на курсовое проектирование. Кинематический и силовой расчет привода.
- 2. Практическое занятие №2 {ПОПС (позиция, обоснование, пример, следствие) формула} (2ч.)[1,2,3,4] Подготовка исходных данных и анализ особенности выполнения прочностных расчетов передач на ПЭВМ с применением пакета прикладных программ «Зуб». Расчет на ПЭВМ зубчатых передач на прочность. Выбор оптимального варианта расчета для проектирования.
- 3. Практическое занятие №3 {ПОПС (позиция, обоснование, пример, следствие) формула} (2ч.)[4,8,10,12,13] Эскизная компоновка редуктора. Конструирование валов, зубчатых колес, подшипниковых узлов.
- **4.** Практическое занятие №4 {ПОПС (позиция, обоснование, пример, следствие) формула} (2ч.)[5,8,10,11,12,13] Расчет валов на прочность. Определение статической прочности для опасных сечений вала и коэффициентов запаса прочности.
- **5.** Практическое занятие №5 {ПОПС (позиция, обоснование, пример, следствие) формула} (2ч.)[4,6,8,10,12,13] Проверка подшипников качения на заданный ресурс. Способы смазывания подшипников. Уплотнения подшипников. Сборка и разборка подшипниковых узлов.
- 6. Практическое занятие №6 {ПОПС (позиция, обоснование, пример, следствие) формула} (2ч.)[8,10,11,12,13] Выбор и расчет муфт привода. Компенсирующая способность муфт и дополнительные нагрузки на детали приводов. Амортизирующая и демпфирующая способность муфт.
- 7. Практическое занятие №7 {ПОПС (позиция, обоснование, пример, следствие) формула} (2ч.)[4,11,13] Чертеж общего вида привода. Технические надписи на чертеже. Разработка технических требований и технической характеристики на изделия. Оформление спецификаций.
- 8. Практическое занятие №8 {ПОПС (позиция, обоснование, пример, следствие) формула} (2ч.)[4] Выполнение рабочих чертежей деталей. Оформление технической документации к проекту, согласование расчетно-пояснительной записки.

Курсовые работы (50ч.)

1. Курсовой проект(**50ч.**)[**1,2,3,4,5,6,8,9,10,12,13**] При проектировании таких механизмов, содержащих обычно двигатель, редуктор, цепную или ременную передачу, муфты и другие детали и узлы общего назначения, наиболее полно охватываются общие вопросы расчета и конструирования основных элементов различных машин.

Курсовой проект выполняется в объеме 3-4 листов чертежей формата A1 с расчетно-пояснительной запиской на 30 - 50 страницах формата A4.

В расчетно-пояснительной записке приводятся пояснения и обоснования принятых конструктивных решений, расчеты, подтверждающие

работоспособность ответственных деталей проектируемого механизма, достижение требуемого качества при наименьших затратах процессе Графическая сборочный изготовления. проекта включает: чертеж редуктора, рабочие чертежи деталей (обычно две детали).

Самостоятельная работа (112ч.)

- 1. Проработка теоретического материала. Подготовка к текущим занятиям(20ч.)[8,9,10]
- **2.** Выполнение курсового проекта(40ч.)[1,2,3,4,5,6,11,13] Цель курсового проектирования закрепить знания, полученные при изучении общеинженерных дисциплин, уметь их применять для решения производственных задач, приобрести практические навыки конструирования и расчета наиболее распространенных и типичных деталей и механизмов общего назначения и приводов технологического оборудования.

Тематика заданий на проектирование - разработка широко распространенных приводных устройств общего и специального назначения (приводы конвейеров, транспортеров, приводы станков), несложных оригинальных механических установок. При проектировании таких механизмов, содержащих обычно двигатель, редуктор, цепную или ременную передачу, муфты и другие детали и узлы общего назначения, наиболее полно охватываются общие вопросы расчета и конструирования основных элементов различных машин.

Курсовой проект выполняется в объеме 3-4 листов чертежей формата A1 с расчетно-пояснительной запиской на 30 - 50 страницах формата A4.

- В расчетно-пояснительной записке приводятся пояснения и обоснования конструктивных принятых решений, расчеты, подтверждающие работоспособность ответственных деталей проектируемого механизма, достижение требуемого качества при наименьших затратах процессе изготовления. Графическая проекта включает: сборочный часть редуктора, рабочие чертежи деталей (обычно две детали). В отдельных заданиях ставится задача для научно - исследовательской работы осуществляется реальное проектирование испытательных стендов и установок, разработка узлов новой техники по заданию предприятий.
- 2. Подготовка к контрольному опросу(16ч.)[8,9,12,13]
- 4. Подготовка к экзамену(36ч.)[8,9,11,12,13]

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Ковалев, И. М. Проектирование привода технологического оборудования: Задания и методические указания по выполнению курсового проекта и расчетных работ по механике, деталям машин и основам конструирования / И. М. Ковалев; Алт. гос. техн. ун-т им. И. И. Ползунова. Барнаул: Изд-во АлтГТУ, 2021. 40 с. http://elib.altstu.ru/eum/download/dm/Kovalev PPTO kprr mu.pdf
- 2. Ковалев, И. М. Расчет механических передач приводов: Учебное пособие. /И. М. Ковалев; Алт. гос. техн. ун-т им. И. И. Ползунова. Барнаул: Изд-во АлтГТУ, 2021. 114 c. http://elib.altstu.ru/eum/download/dm/Kovalev RMPP up.pdf
- A.B. Баранов, Расчет кинематических силовых И параметров Методические электромеханического привода. указания ПО выполнению расчетных заданий, курсовых работ и курсовых проектов по деталям машин и механике для специальностей технического направления / А.В. Баранов, В.Ю. Русаков; Алт. гос. техн. ун-т им. И. И. Ползунова. – Барнаул: Изд-во АлтГТУ, 2020. – 21 c. http://elib.altstu.ru/eum/download/dm/Baranov RKiSPEP rzkrdp mu.pdf
- 4. Ковалев И.М. Методические рекомендации к курсовому проекту по дисциплине «Детали машин и основы конструирования» для всех специальностей машиностроительного направления / Ковалев И.М., Собачкин В.В. Алт. гос. техн. ун-т им. И.И. Ползунова.- Барнаул: Изд-во Алт. гос. техн. ун-т им. И.И. Ползунова.- 2008, 22 с. ЭБС АлтГТУ. http://new.elib.altstu.ru/eum/download/dm/Kov-Sob-metKP-dm.pdf
- 5. Ковалев И.М. Конструирование и расчет валов редуктора. Методические указания к выполнению расчетных заданий и курсового проекта по дисциплинам «Деталям машин и основам конструирования», «Механика» / Алт. гос. техн. ун-т им. И.И. Ползунова. Барнаул: Изд-во АлтГТУ, 2021. 44 с. http://elib.altstu.ru/eum/download/dm/Kovalev KiRVR rzkp mu.pdf
- 6. Ковалев И.М. Выбор и расчет подшипников качения: Методические указания к курсовому проектированию по деталям машин и основам конструирования / И.М. Ковалев: Алт. гос. тех. ун-т им. И.И. Ползунова. Барнаул: Изд-во АлтГТУ, 2007. 28 с. 52 экз.
- 7. Баранов А. В. Сборник по лабораторным работам. Методические указания к лабораторным работам и практическим занятиям по дисциплинам «Детали машин», «Детали машин и основы конструирования», «Основы проектирования деталей машин и механизмов», «Прикладная механика», «Механика» / А. В. Баранов, А.М. Гвоздев, И. М. Ковалев, В.Ю. Русаков, В.В. Собачкин. Алт. гос. техн. ун-т им. И.И. Ползунова. Барнаул: Изд-во АлтГТУ, 2020. 98 с.— Режим доступа: http://elib.altstu.ru/eum/download/dm/Baranov SbLab mu.PDF

6. Перечень учебной литературы

- 6.1. Основная литература
- 8. Тюняев А.В., Звездаков В.П., Вагнер В.А. Детали машин. Учебник для студентов машино-строительных и механических специальностей [Электронный ресурс]: Учебник.— Электрон. дан.— Барнаул: АлтГТУ, 2011.— Режим доступа:

http://elib.altstu.ru/eum/download/dm/Zvezdakov DetMash u.pdf

9. Жулай, В. А. Детали машин : учебное пособие / В. А. Жулай. — Москва : Ай Пи Ар Медиа, 2021. — 237 с. — ISBN 978-5-4497-1106-9. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/108292.html

6.2. Дополнительная литература

- 10. Родионов, Ю. В. Детали машин. Курсовое проектирование : учебное пособие / Ю. В. Родионов, Д. В. Никитин, А. А. Букин. Тамбов : Тамбовский государственный технический университет, ЭБС АСВ, 2020. 81 с. ISBN 978-5-8265-2265-3. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/115765.html
- 11. Детали машин и основы конструирования : учебное пособие / Ю. В. Воробьев, А. Д. Ковергин, Ю. В. Родионов [и др.] ; Тамбовский государственный технический университет. Тамбов : Тамбовский государственный технический университет (ТГТУ), 2014. 172 с. : ил., табл. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=278004

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 12. GEC IPR BOOKS http://www.iprbookshop.ru/
- 13. ЭБС "Университетская библиотека" http://biblioclub.ru

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение		
1	LibreOffice		
2	Windows		
3	Антивирус Kaspersky		

№пп	Используемые профессиональные базы данных и информационные			
	справочные системы			
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным			
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные			
	интернет-ресурсы (http://Window.edu.ru)			
2	Единая база ГОСТов Российской Федерации (http://gostexpert.ru/)			
3	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к			
	фондам российских библиотек. Содержит коллекции оцифрованных документов			
	(как открытого доступа, так и ограниченных авторским правом), а также каталог			
	изданий, хранящихся в библиотеках России. (http://нэб.pф/)			
4	Росстандарт (http://www.standard.gost.ru/wps/portal/)			

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения учебных занятий
помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».