Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФСТ

С.В. Ананьин

Рабочая программа дисциплины

Код и наименование дисциплины: Б1.О.22 «Сопротивление материалов»

Код и наименование направления подготовки (специальности): 15.03.02

Технологические машины и оборудование

Направленность (профиль, специализация): Инновационные технологические

системы в пищевой промышленности

Статус дисциплины: обязательная часть

Форма обучения: заочная

Статус	Должность	И.О. Фамилия
Разработал	доцент	А.Д. Борисова
	Зав. кафедрой «МиИ»	А.А. Максименко
Согласовал	руководитель направленности (профиля) программы	О.Н. Терехова

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора
ОПК-13	Способен применять стандартные методы расчета при проектировании деталей и узлов технологических машин и оборудования	ОПК-13.2	Способен рассчитывать и проектировать детали и узлы технологических машин и оборудования с применением стандартных методов

2. Место дисциплины в структуре образовательной программы

	10 01	· • •
Дисциплины (практики),		Материаловедение, Теоретическая механика
предшествующие	изучению	
дисциплины,	результаты	
освоения которых н	еобходимы	
для освоения	данной	
дисциплины.		
Дисциплины (практ	тики), для	Детали машин и основы конструирования
которых результаты	освоения	
данной дисциплин	ы будут	
необходимы, как	входные	
знания, умения и вла	адения для	
их изучения.		

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 4 / 144 Форма промежуточной аттестации: Экзамен

	Виды занятий, их трудоемкость (час.)			Объем контактной	
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
заочная	6	6	6	126	23

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: заочная

Семестр: 4

Лекционные занятия (6ч.)

- 1. Введение. Основные гипотезы и допущения. Метод сечений. {лекция с разбором конкретных ситуаций} (2ч.)[7,8,9] Формирование способности применять стандартные методы расчета при проектировании деталей и узлов технологических машин и оборудования. Структура курса.Понятие о силе и системе сил. Аксиомы статики. Связи и реакции связей. Виды опорных устройств. Плоская система сходящихся сил. Проекция силы на ось. Определение равнодействующей системы сил аналитическим способом. Пара сил и момент силы относительно точки. Главный вектор и главный момент. Уравнения равновесия произвольной плоской системы сил. Виды нагрузок. Определение опорных реакций. Механические свойства материалов. Виды расчетов. Основные гипотезы и допущения. Классификация нагрузок. Классификация тел. Внутренние силовые факторы.Метод сечений. Понятие о напряжениях в поперечном сечении бруса. Виды деформаций тела.
- 2. Геометрические характеристики плоских сечений. Растяжение и сжатие. {лекция с разбором конкретных ситуаций} (2ч.)[7,8,9] Выработка способности рассчитывать и проектировать детали и узлы технологических машин и оборудования с применением стандартных методов. Статический момент площади сечения. Центр тяжести площади. Моменты инерции плоских фигур. инерции сложных сечений. Моменты инерции параллельных осей. Главные оси и главные моменты инерции. Растяжение и сжатие. Напряжения и деформации при растяжении и сжатии. Построение эпюр. Определение напряжения и деформации при растяжении и сжатии. Расчет перемещений поперечных сечений бруса при растяжении Механические испытания материалов на растяжение и сжатие. Механические характеристики материалов. Виды диаграмм растяжения. Концентрация напряжений. Предельные и допускаемые напряжения. Расчеты на прочность при растяжении и сжатии. Условия прочности.
- 3. Напряжения и деформации при сдвиге и кручении. {лекция с разбором конкретных ситуаций} (1ч.)[7,8,9] Формирование способности применять стандартные методы расчета при проектировании деталей и узлов технологических машин и оборудования, а именно : Сдвиг. Кручение. Напряжения и деформации. Расчеты на прочность и жесткость при сдвиге и кручении. Внутренние силовые факторы при сдвиге и кручении. Правило знаков. Построение эпюр. Правила контроля эпюр. Деформации при чистом сдвиге и кручении. Касательные напряжения и расчет на прочность при сдвиге и кручении.
- **4.** Напряжения и деформации при изгибе. {лекция с разбором конкретных ситуаций} (1ч.)[7,8,9] Выработка способности рассчитывать и проектировать детали и узлы технологических машин и оборудования с применением стандартных методов. : Классификация видов изгиба. Внутренние силовые факторы при изгибе. Правило знаков. Дифференциальные зависимости при прямом поперечном изгибе. Построение эпюр поперечных сил и изгибающих моментов. Правила контроля эпюр. Деформации при чистом изгибе. Нормальные

напряжения при изгибе. Рациональные формы поперечных сечений. Касательные напряжения при изгибе. Расчет на прочность при изгибе. Линейные и угловые перемещения при изгибе. Дифференциальное уравнение изогнутой оси балки и его интегрирование. Определение перемещений методом Мора. Способы вычисления интеграла Мора. Правило Верещагина.

Практические занятия (6ч.)

1. Определение реакций опор. Метод сечений. {работа в малых группах} (2ч.)[1,4,9,10,11] Определение возможных направлений реакций опор. Составление уравнений равновесия для балок и рам. Правила знаков.

Определение внутренних усилий методом сечений в плоских шарнирностержневых системах. Определение внутренних усилий методом сечений в балках при растяжении-сжатии и при кручении- продольных сил и крутящих моментов. Формирование способности применять естественнонаучные знания, методы математического анализа и моделирования для решения рассматриваемых задач инженерного проектирования и конструирования.

- 2. Определение напряжений, деформаций и перемещений при растяжениисжатии. {работа в малых группах} (1ч.)[1,2,4,9,10,11] Выработка способности выполнять задачи проектирования и конструирования приборов и комплексов широкого назначения с применением методов математического анализа и моделирования: Построение эпюр внутренних усилий, напряжений при растяжении-сжатии. Подбор поперечного сечения стержней из условия прочности. Определение деформаций и перемещений при растяжении-сжатии.
- 3. Определение геометрических характеристик плоских сечений. {работа в малых группах} (1ч.)[3,4,9,10,11] Формирование способности применять естественнонаучные знания, методы математического анализа и моделирования для решения рассматриваемых задач инженерного проектирования и конструирования приборов и комплексов, а именно : Определение статических моментов, осевых моментов, центробежных моментов инерции плоских сечений конструкций. Определение центра тяжести и моментов инерции сложного составного сечения.
- **4.** Построение эпюр внутренних силовых факторов для балок и рам. Расчет и подбор сечений. {работа в малых группах} (2ч.)[1,3,4,9,10,11] Определение внутренних усилий и напряжений при изгибе балок и рам. Определение размеров поперечного сечения при изгибе балок. Подбор симметричных и несимметричных сечений из условия прочности при изгибе.

Формирование способности выполнять инженерные задачи проектирования и конструирования приборов и комплексов широкого назначения с применением методов математического анализа и моделирования, а также естественнонаучных знаний. Определение перемещений в балках методом начальных параметров и методом Мора. Способ Верещагина.

Лабораторные работы (6ч.)

1. Методы стандартных испытаний материала противостоять приложенным нагрузкам и воздействиям без разрушения {работа в малых группах} (2ч.)[6,7,8,9,10,11] Испытание на растяжение образца из малоуглеродистой стали. инструкций, графиков, плана проведения эксперимента определению физико-механических свойств материала при внешних воздействиях 2. Методы стандартных испытаний материала противостоять приложенным нагрузкам и воздействиям без разрушения {работа в малых группах} **(2ч.)**[6,7,8,9,10,11] Испытание образцов из различных материалов на сжатие. графиков, инструкций, плана проведения эксперимента определению физико-механических свойств материала при внешних воздействиях 3. Методы стандартных испытаний материала противостоять приложенным нагрузкам и воздействиям без разрушения {работа в малых группах} (2ч.)[6,7,8,9,10,11] Определение модуля упругости второго рода при кручении стали, чугуна, дерева.

Самостоятельная работа (126ч.)

- 1. Самостоятельное изучение разделов дисциплины {с элементами электронного обучения и дистанционных образовательных технологий} (48ч.)[8,9,10,11] Проработка лекционного материала
- 2. Подготовка и выполнение контрольной работы {с элементами электронного обучения и дистанционных образовательных технологий} (55ч.)[1,4,9] Выполнение контрольной работы.Решение задач по темам:метод сечений и определение внутренних силовых факторов, расчет на прочность при растяжении-сжатии,кручение, плоский изгиб и подбор поперечных сечений балок.
- 3. Защита контрольной работы {с элементами электронного обучения и дистанционных образовательных технологий} (8ч.)[4,7,9,10,11] Защита задач по темам: метод сечений и определение внутренних силовых факторов, расчет на прочность при растяжении-сжатии, кручение, плоский изгиб и подбор поперечных сечений балок.
- **4.** Защита лабораторных работ {с элементами электронного обучения и дистанционных образовательных технологий} (6ч.)[6,8,9,10,11] Лабораторные работы 1,2,3
- **5.** Подготовка к экзамену {с элементами электронного обучения и дистанционных образовательных технологий} (9ч.)[5,7,8,9,10,11] Подготовка и сдача экзамена по теоретическому материалу и решению задач по темам : Растяжение- сжатие, кручение, сдвиг, изгиб.
- 5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Алексейцев А.И. Метод сечений. Определение внутренних усилий: Методические указания и варианты заданий/ Алт. гос. тех. ун-т им. И. И. Ползунова. Барнаул, 2019. 60 с. Прямая ссылка: http://elib.altstu.ru/eum/download/mii/Alexeytsev MetSechOprVnUs mu.pdf
- 2. Алексейцев А.И. Расчет на прочность при растяжении (сжатии): Методические указания и варианты заданий/А. И. Алексейцев, А. Д. Борисова; Алт. гос. тех. ун-т им. И. И. Ползунова. Барнаул, 2018. 35 с. Прямая ссылка: http://elib.altstu.ru/eum/download/mii/AleksBor RaschProchRastSz mu.pdf
- 3. Алексейцев А.И. Плоский изгиб: Методические указания и варианты заданий/ А.И. Алексейцев, Е. В. Черепанова; Алт. гос. тех. ун-т им. И. И. Ползунова. Барнаул, 2015. 34 с. Прямая ссылка: http://elib.altstu.ru/eum/download/mii/Alekseytsev_pliz.pdf
- 4. Барабаш, Ю.Г. Сопротивление материалов: Методические указания и контрольные задания для студентов-заочников механических, машиностроительных, автотранспортных специальностей. Издание третье [Текст] / Ю.Г. Барабаш; Алт. гос. техн. ун-т им. И.И. Ползунова Барнаул: Типография АлтГТУ, 2014. 62 с. Прямая ссылка: http://elib.altstu.ru/eum/download/prm/sopromat zaochn.pdf
- 5. Перфильева Н.В. Тесты для подготовки к опросу по теме «Напряжение и деформации при растяжении (сжатии)»: Сборник тестов для студентов направлений: 12.03.01 «Приборостроение» , 13.03.02 «Электроэнергетика и электротехника», 13.03.03 «Энергетическое машиностроение» очной и заочной форм обучения / АлтГТУ им. И.И.Ползунова. Барнаул: Изд-во АлтГТУ, 2020. 18 с. Прямая ссылка: http://elib.altstu.ru/eum/download/mii/Perfiljeva NaprDefRS st tm.pdf
- 6. Сборник лабораторных работ по механике: Методические указания. Коллектив авторов кафедры «Механика и инноватика». Алт.гос.техн. ун-т им. И.И. Ползунова. Барнаул: Изд-во АлтГТУ, 2016. -85 с. Прямая ссылка: http://elib.altstu.ru/eum/download/mii/Cherkanov mex lab.pdf

6. Перечень учебной литературы

- 6.1. Основная литература
- 7. Сборник задач по сопротивлению материалов с теорией и примерами : учебное пособие / ред. А. Г. Горшков, Д. В. Тарлаковский. Москва : Физматлит, 2011. 613 с. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=79828
- 8. Межецкий, Г. Д. Сопротивление материалов : учебник / Г. Д. Межецкий, Г. Г. Загребин, Н. Н. Решетник. 5-е изд. Москва : Дашков и К $^{\circ}$, 2016. 432 с. : ил. Режим доступа: по подписке. URL:

- 6.2. Дополнительная литература
- 9. Барабаш, Ю.Г. Краткий курс лекций по сопротивлению материалов: учебное пособие. Издание третье, исправленное и дополненное[Текст] / Ю.Г. Барабаш; Алт. гос. техн. ун-т им. И.И. Ползунова Барнаул, 2019. 123 с. Режим доступа: http://elib.altstu.ru/eum/download/mii/Barabash SoprMatKL up.pdf.
- 7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
 - 10. http://new.elib.altstu.ru/
 - 11. http://astulib.secna.ru/
- 8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационно-образовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение	
1	LibreOffice	
2	Windows	
3	Антивирус Kaspersky	

№пп	Используемые профессиональные базы данных и информационные		
	справочные системы		
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным ресурсам" для студентов и преподавателей; каталог ссылок на образовательные интернет-ресурсы (http://Window.edu.ru)		
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к фондам российских библиотек. Содержит коллекции оцифрованных документов (как открытого доступа, так и ограниченных авторским правом), а также каталог		

№пп	Используемые профессиональные базы данных и информационные	
	справочные системы	
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)	

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы	
учебные аудитории для проведения учебных занятий	
помещения для самостоятельной работы	

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».