ПРИЛОЖЕНИЕ А ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Физика»

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код контролируемой компетенции	Способ оценивания	Оценочное средство
ОК-7: способностью к самоорганизации и самообразованию	Зачет; экзамен	Комплект контролирующих материалов для зачета; комплект контролирующих материалов для экзамена
ОПК-3: готовностью применять фундаментальные математические, естественнонаучные и общеинженерные знания в профессиональной деятельности	Зачет; экзамен	Комплект контролирующих материалов для зачета; комплект контролирующих материалов для экзамена
ПК-6: способностью использовать на практике современные представления о влиянии микро- и нано-структуры на свойства материалов, их взаимодействии с окружающей средой, полями, частицами и излучениями	Зачет; экзамен	Комплект контролирующих материалов для зачета; комплект контролирующих материалов для экзамена

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Показатели оценивания компетенций представлены в разделе «Требования к результатам освоения дисциплины» рабочей программы дисциплины «Физика» с декомпозицией: знать, уметь, владеть.

При оценивании сформированности компетенций по дисциплине «Физика» используется 100-балльная шкала.

Критерий	Оценка по 100- балльной шкале	Оценка по традиционной шкале
Студент твёрдо знает программный материал, системно и грамотно излагает его, демонстрирует необходимый уровень компетенций, чёткие, сжатые ответы на дополнительные вопросы, свободно владеет понятийным аппаратом.	75-100	Отлично
Студент проявил полное знание программного материала,	50-74	Хорошо

демонстрирует сформированные на		
достаточном уровне умения и навыки,		
указанные в программе компетенции,		
допускает непринципиальные		
неточности при изложении ответа на		
вопросы.		
Студент обнаруживает знания только	25-49	<i>Удовлетворительно</i>
основного материала, но не усвоил		_
детали, допускает ошибки,		
демонстрирует не до конца		
сформированные компетенции, умения		
систематизировать материал и делать		
выводы.		
Студент не усвоил основное	<25	Неудовлетворительно
содержание материала, не умеет		
систематизировать информацию,		
делать необходимые выводы, чётко и		
грамотно отвечать на заданные		
вопросы, демонстрирует низкий		
уровень овладения необходимыми		
компетенциями.		

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности.

№ пп	Вопрос/Задача	Проверяемые компетенции
1	Введение: Формирование и развитие способности к самоорганизации и самообразованию при изучении физики.	ОК-7, ОПК-3
	Физика в системе естественных наук. Общая структура и задачи дисциплины «Физика». Краткая история физических идей, концепций и открытий.	
	Применение фундаментальных математических, естественнонаучных и общеинженерных знаний в	
2	будущей профессиональной деятельности. Фундаментальные законы, методы теоретического и	OK-7 OUK-3
_	экспериментального исследования в механике, молекулярной физике и термодинамике.	ok 7, onk 3
	ЧАСТЬ №1 (Механика, молекулярная физика и термодинамика)	
	1. Кинематика поступательного и вращательного движения: Кинематические уравнения. Скорость.	
	Ускорение. Нормальное и тангенциальное ускорение. Угловое перемещение, угловая	
	скорость, угловое ускорение. Связь линейных величин с угловыми.	
	2. Динамика поступательного движения, уравнения движения: Законы Ньютона. Силы в механике.	
	Принцип относительности Галилея. Силы инерции. 3. Законы сохранения: Работа силы. Мощность.	
	Кинетическая и потенциальная энергия. Связь между консервативной силой и потенциальной	

№ пп	Вопрос/Задача	Проверяемые компетенции
	энергией. Центр масс системы. Закон сохранения энергии в консервативной системе. Закон сохранения энергии в диссипативной системе. Закон сохранения импульса. Упругое и неупругое соударение тел.	·
	4. Динамика вращательного движения твердого тела: Момент силы и момент импульса. Момент инерции. Теорема Штейнера. Закон сохранения момента импульса. Кинетическая энергия вращения. Уравнение динамики вращательного	
	движения. 5. Основы МКТ, уравнение состояния идеального газа: Параметры термодинамической системы. Идеальный газ. Законы идеального газа. Уравнение состояния идеального газа. Основное уравнение МКТ идеальных газов. Средняя арифметическая скорость молекул газа. Средняя	
	квадратичная скорость молекул газа. Наиболее вероятная скорость молекул газа. Закон Максвелла о распределении молекул идеального газа по скоростям. Барометрическая формула. Распределение Больцмана. 6. Основы термодинамики: Внутренняя энергия термодинамической системы. Внутренняя энергия	
	термодинамической системы. Внутренняя энергия идеального газа. Число степеней свободы системы. Закон Больцмана о распределении энергии. Работа газа в различных изопроцессах. Три начала термодинамики. Применение I начала термодинамики к различным изопроцессам. Удельная и молярная теплоемкость газа. Прямой и обратный циклы. КПД кругового цикла. Обратимые	
3	и необратимые процессы. Фундаментальные законы, методы теоретического и экспериментального исследования в электромагнезнизме ЧАСТЬ №2 (Электричество и магнетизм)	ОК-7, ОПК-3
	1. □Электрическое поле в вакууме: Электрический заряд. Закон Кулона. Напряженность и потенциал электростатического поля. Принцип суперпозиции. Связь напряженности и потенциала. Теорема Гаусса для электростатического поля в вакууме. Работа сил электростатического поля.	
	2. □Вещества в электрическом поле: Поляризация диэлектриков. Вектор электрической индукции. Теорема Гаусса для вектора электростатической индукции. Условия на границе двух диэлектриков. Проводники в электрическом поле. Конденсаторы. Энергия электрического поля.	
	3.□Постоянный электрический ток: Сила и плотность тока. Законы постоянного тока.	_

№ пп	Вопрос/Задача	Проверяемые
	Электродвижущая сила. Законы Ома для	компетенции
	неоднородного участка цепи и замкнутого	
	контура. Работа и мощность электрического тока.	
	Закон Джоуля-Ленца. Правила Кирхгофа.	
	4. □Ток в средах: Электрический ток в	
	полупроводниках. Собственная и примесная	
	проводимость полупроводников. Электрический ток	
	в газах. Самостоятельный и несамостоятельный	
	газовый разряд. Электрический ток в жидкостях. Электролиз.	
	5. □ Магнитное поле в вакууме: Магнитное поле.	
	Вектор магнитной индукции и напряженности	
	магнитного поля. Принцип суперпозиции магнитных	
	полей. Закон Био-Савара-Лапласа. Сила Лоренца и	
	сила Ампера. Теорема Гаусса для магнитного поля	
	в вакууме. Циркуляция вектора магнитной	
	индукции. Движение заряженных частиц в	
	электрических и магнитных полях. Эффект Холла.	
	6. □Магнитные свойства вещества: Молекулярные	
	токи. Вектор намагниченности. Закон полного тока для магнитного поля в веществе. Магнитная	
	проницаемость. Диа-, пара- и ферромагнетики.	
	Природа ферромагнетизма.	
	7. □Электромагнитная индукция: Явление	
	электромагнитной индукции. Закон Фарадея.	
	Правило Ленца. Самоиндукция. Энергия и	
	плотность энергии магнитного поля. Взаимная	
	индукция. Трансформатор. 8. □Основы теории Максвелла для	
	8. ⊔Основы теории Максвелла для электромагнитного поля	
4	Фундаментальные законы, методы теоретического и	ОК-7. ОПК-3. ПК-6
	экспериментального исследования в теории	,
	колебаний, оптике, атомной и ядерной физике.	
	(Колебания и волны. Оптика. Атомная и ядерная	
	физика) 1. Колебания и волны: Свободные, затухающие и	
	вынужденные колебания. Сложение колебаний.	
	Закон Ома для цепи переменного тока. Мощность	
	переменного тока. Волновое движение. Плоские и	
	сферические волны. Волновое уравнение.	
	Электромагнитные волны. Энергия и импульс	
	электромагнитного поля. Вектор Пойнтинга. 2. Геометрическая и волновая оптика: Законы	
	геометрическай и волновай оптика. Законы	
	монохроматических волн. Условия	
	интерференционных максимумов и минимумов.	
	Полосы равного наклона и равной толщины. Кольца	
	Ньютона. Принцип Гюйгенса-Френеля. Метод зон	
	Френеля. Дифракция Френеля и Фраунгофера.	

№ пп	Вопрос/Задача	Проверяемые компетенции
Νº ππ	Вопрос/Задача Дифракционная решетка. Поляризация света. Закон Малюса. Закон Брюстера. Двойное лучепреломление. Вращение плоскости поляризации. Дисперсия света. Нормальная и аномальная дисперсии. 3. Квантовая оптика: Тепловое излучение. Абсолютно черное тело. Функция Кирхгофа. Законы Стефана-Больцмана, Вина. Гипотеза Планка. Квантовая природа излучения. Формула Планка. Фотоэффект. Законы внешнего фотоэффекта. Уравнение Эйнштейна для фотоэффекта. Фотоны. Давление света. Эффект Комптона. 4. Элементы атомной физики и квантовой механики: Ядерная модель атома Резерфорда. Постулаты Бора. Гипотеза де Бройля. Опыт Девиссона и Джермера. Принцип неопределенности. Уравнение Шредингера. Корпускулярно-волновой дуализм: фотоны и микрочастицы. Волновая функция, и ее статистическое толкование. Правила отбора для квантовых переходов. 5. Элементы ядерной физики: Состав ядра атома. Ядерные силы и модели атомного ядра. Виды радиоактивного излучения. Ядерные реакции. Элементарные частицы. Типы взаимодействия. Рассмотрение примеров использования на практике современных представлений о влиянии микро- и нано-структуры на свойства материалов,	· ·
	их взаимодействии с окружающей средой, полями, частицами и излучениями.	

4. Файл и/или БТЗ с полным комплектом оценочных материалов прилагается.