Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ЭФ Полищук В.И.

Рабочая программа дисциплины

Код и наименование дисциплины: Б1.В.ДВ.1.2 «Системы управления технологическими параметрами»

Код и наименование направления подготовки (специальности): 13.04.02 Электроэнергетика и электротехника

Направленность (профиль, специализация): Электротехнологии и электрооборудование в агропромышленном комплексе

Статус дисциплины: элективные дисциплины (модули)

Форма обучения: очная

Статус	Должность	И.О. Фамилия
Разработал	доцент	С.Ф. Нефедов
	Зав. кафедрой «ЭПБ»	Б.С. Компанеец
Согласовал	руководитель направленности (профиля) программы	Б.С. Компанеец

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора	
ПК-1	Способен осуществлять анализ состояния и динамики показателей качества объектов деятельности с использованием необходимых методов и средств исследований	ПК-1.1	Применяет методы анализа состояния и динамики показателей качества объектов профессиональной деятельности	

2. Место дисциплины в структуре образовательной программы

предшествующие и дисциплины, рез	ктики), зучению ультаты бходимы данной	Оптимизация безопасности электроустановок, Технические системы обеспечения безопасности электроустановок
'		Научно-исследовательская работа

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 4 / 144 Форма промежуточной аттестации: Экзамен

	Виды занятий, их трудоемкость (час.)			Объем контактной	
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
очная	16	0	16	112	43

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 2

Лекционные занятия (16ч.)

1. Автоматизация и системы управления {лекция-пресс-конференция}

- (2ч.)[2,5,6] Формирование способности осуществлять анализ состояния и динамики показателей качества объектов электроэнергетики: Возникновение, дальнейшая разработка и примеры автоматических систем и устройств. Технические процессы. Механизация и автоматизация. Предпосылки автоматизации. Классификация систем и принципы управления.
- автоматических систем регулирования технологических разбором параметров. {лекшия конкретных ситуаций} Формирование способности осуществлять анализ состояния показателей качества объектов электроэнергетики: Способы создания автоматических систем регулирования. Пример математического Исследование динамики объектов управления с применением дифференциальных уравнений. Объекты регулирования ИΧ Показатели качества регулирования и их характеристика.
- Обшие динамических сведения характеристиках автоматического регулирования (САР) и критерии их устойчивости {с элементами электронного обучения и дистанционных образовательных технологий (4ч.)[2,5,6] Формирование способности осуществлять состояния и динамики показателей качества объектов электроэнергетики: Исследование динамики систем регулирования с помощью преобразования Лапласа. Динамические звенья САР. Соединение динамических звеньев. **Устойчивость** автоматических систем регулирования. Алгебраические частотные критерии устойчивости.
- 4. Техническое обеспечение автоматизации управления параметрами. {с элементами электронного обучения и дистанционных образовательных технологий (4ч.)[2,5,6] Формирование способности осуществлять состояния и динамики показателей качества объектов электроэнергетики: Технологические измерения приборы. Преобразователи И передачи сигнала. Измерение величин: давления, температуры, расхода, количества твердых и сыпучих материалов, уровня, плотности, вязкости, кислотности растворов, химического состава жидкостей механизмы и регулирующие органы. Исполнительные Автоматические регуляторы.
- Функциональные схемы автоматизации. Их составление и чтение. (44.)[2,3,4,7]{лекция-пресс-конференция} Формирование способности осуществлять анализ состояния и динамики показателей качества объектов электроэнергетики: Проектирование принципиальных автоматизации. Выбор параметров контроля и управления процессом. Выбор приборов контроля, регуляторов и средств автоматизации. Описание схем контроля, регулирования, сигнализации. Функциональная схема автоматизации.

Практические занятия (16ч.)

1. Технологические процессы: построение структурных и функциональных схем. {дискуссия} (2ч.)[5,6] Формирование способности осуществлять анализ

состояния и динамики показателей качества объектов электроэнергетики. Чтение и составление простейших структурных и функциональных схем автоматических систем.

- 2. Написание алгоритмов. Алгоритм с ветвлением. Циклический алгоритм {дискуссия} (2ч.)[5,6] Формирование способности осуществлять анализ состояния и динамики показателей качества объектов электроэнергетики. Составление простейших алгоритмов (линейных, с ветвлением и циклических).
- 3. Изучение генераторных и параметрических датчиков {дискуссия} (2ч.)[1,5,6] Формирование способности осуществлять анализ состояния и динамики показателей качества объектов электроэнергетики. Датчики (генераторные и параметрические): устройство, принцип работы.
- 4. Изучение операционных усилителей (дискуссия) (2ч.)[2,3,4] Формирование способности осуществлять анализ состояния и динамики показателей качества объектов электроэнергетики. Элементы операционного усилителя: принцип работы, назначение в системах автоматического регулирования.
- 5. Цифровые устройства автоматики: триггеры, регистры. {дискуссия} (2ч.)[2,3,4] Формирование способности осуществлять анализ состояния и динамики показателей качества объектов электроэнергетики. Логические элементы. Применение логических элементов в цифровых системах автоматики. Принцип работы триггеров и регистров.
- 6. Цифровые устройства автоматики: счётчики импульсов и коммутаторы. {дискуссия} (2ч.)[2,3,4] Формирование способности осуществлять состояния и динамики показателей качества объектов электроэнергетики. Применение логических элементов В цифровых системах автоматики. Принцип работы цифровых И назначение устройствах автоматики счетчиков импульсов и коммутаторов.
- Типовые регуляторы систем управления {дискуссия} Формирование способности осуществлять анализ состояния динамики показателей качества объектов электроэнергетики. Схемные решения законы управления, регуляторов: реализация типовые построения на базе операционных усилителей, методы настройки.

Самостоятельная работа (112ч.)

- 1. Повторение материалов по пройденным занятиям. {творческое задание} (424.)[1,3,4,5,6] Повторение материалов ПО пройденным занятиям. Формулирование целей Выявление приоритетов задач исследования. решения Выбор Осуществление задач. И создание критериев оценки. анализа состояния динамики показателей качества своей работы.
- 2. Углубленное изучение разделов лекционных и практических занятий по нормативной и технической литературе. {творческое задание} (12ч.)[1,3,6,7,8] Углубленное изучение разделов лекционных и практических занятий по нормативной и технической литературе. Проведение поиска по источникам

патентной информации. Применение методов анализа состояния и динамики показателей качества создаваемой системы.

- 3. Подготовка к контрольному опросу. {творческое задание} (6ч.)[2,4,6,8] Подготовка к контрольному опросу. Подробное рассмотрение пройденных тем, выделение ключевых моментов и их анализ.
- 4. Подготовка к защите расчетного задания. {творческое задание} (16ч.)[2,3,4,6] Подготовка к защите расчетного задания в рамках своей магистерской диссертации. Выполнение задач анализа предметной области, автоматизации и управления технологическими параметрами.
- **5.** Подготовка к экзамену. {творческое задание} (36ч.)[1,2,3,4,5,7,8]
- 5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- объектно-ориентированному Практикум ПО программированию [Электронный ресурс] : Электрон. текстовые дан. 4-е изд. / И. А. С. М. Окулов. – М.: Издательство «БИНОМ. Лаборатория 369 знаний», 2015. c.: Режим доступа: https://e.lanbook.com/book/66121 - Загл. с экрана.
- 2. Нефедов С.Ф., Дробязко О.Н. Моделирование и автоматизация прикладных задач электроэнергетики [Электронный ресурс]: Учебнометодическое пособие.— Электрон. дан.— Барнаул: АлтГТУ, 2021.— Режим доступа:

http://elib.altstu.ru/eum/download/epb/Nefedov_ModAutPriklZadachElEnerg_ump.pdf, авторизованный

6. Перечень учебной литературы

- 6.1. Основная литература
- 3. Основы электроснабжения [Электронный ресурс] : учебное пособие / Ю. М. Фролов, В. П. Шелякин. СПб.: Издательство «Лань», 2012. 480 с.: ил. (Учебники для вузов. Специальная литература). Режим доступа: https://e.lanbook.com/book/4544 Загл. с экрана.
- 4. Основы технологий баз данных [Электронный ресурс] : учеб. пособие / Б. А. Новиков, Е. А. Горшкова; под ред. Е. В. Рогова М.: Издательство «ДМК Пресс», 2019. 240 с. Режим доступа: https://e.lanbook.com/book/123699 Загл. с экрана.

6.2. Дополнительная литература

6.2. Дополнительная литература

- 5. Теоретические основы информатики [Электронный ресурс] : Учебник для вузов. 3-е изд. перераб. и доп. / Б. Е. Стариченко М.: Издательство «Горячая линия Телеком», 2017. 400 с.: ил. Режим доступа: https://e.lanbook.com/book/111107 Загл. с экрана.
- 6. Rational Rose 2000 и UML. Визуальное моделирование [Электронный ресурс] : Пер. с англ. / Т. Кватрани М.: Издательство «ДМК Пресс», 2009. 176 с.: ил. (Серия «Для программистов»). Режим доступа: https://e.lanbook.com/book/1237 Загл. с экрана.
- 7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
- 7. Базы данных: конспект лекций [Электронный ресурс]: Электронный учебник. Режим доступа: http://www.libma.ru/kompyutery_i_internet/bazy_dannyh_konspekt_lekcii/ Загл. с экрана.
- 8. Методология объектно-ориентированного моделирования [Электронный ресурс]: Электронный учебник. Режим доступа: https://studme.org/174095/tehnika/metodologiya_obektno_orientirovannog o modelirovaniya Загл. с экрана.
- 8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение	
1	LibreOffice	
2	Microsoft Office	
2	Windows	
3	Антивирус Kaspersky	
5	7-Zip	

№пп	Используемые профессиональные базы данных и информационные			
	справочные системы			
1	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к фондам российских библиотек. Содержит коллекции оцифрованных документов (как открытого доступа, так и ограниченных авторским правом), а также каталог изданий, хранящихся в библиотеках России. (http://нэб.pф/)			

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специа	льных помещений і	и помещений для самостоятельной работы
учебные аудитории для п	проведения учебных	занятий
помещения для самостоя	гельной работы	

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».