ПРИЛОЖЕНИЕ А

ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Технические системы обеспечения безопасности электроустановок»

1. Перечень оценочных средств для компетенций, формируемых в результате освоения дисциплины

Код контролируемой компетенции	Способ оценивания	Оценочное средство
ПК-13: Способен проводить выбор методов и способов обеспечения экологической и технической безопасности производства	Курсовая работа; экзамен	Контролирующие материалы для защиты курсовой работы; комплект контролирующих материалов для экзамена

2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

Оцениваемые компетенции представлены В разделе «Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения рабочей компетенций» программы дисциплины «Технические системы обеспечения безопасности электроустановок».

При оценивании сформированности компетенций по дисциплине «Технические системы обеспечения безопасности электроустановок» используется 100-балльная шкала.

Критерий	Оценка по 100- балльной шкале	Оценка по традиционной шкале
Студент освоил изучаемый материал (основной и дополнительный), системно и грамотно излагает его, осуществляет полное и правильное выполнение заданий в соответствии с индикаторами достижения компетенций, способен ответить на дополнительные вопросы.	75-100	Отлично
Студент освоил изучаемый материал, осуществляет выполнение заданий в соответствии с индикаторами достижения компетенций с непринципиальными ошибками.	50-74	Хорошо
Студент демонстрирует освоение только основного материала, при выполнении заданий в соответствии с индикаторами достижения компетенций допускает отдельные ошибки, не способен систематизировать материал и делать выводы.	25-49	Удовлетворительно
Студент не освоил основное	<25	Неудовлетворительно

содержание изучаемого материала,	
задания в соответствии с	
индикаторами достижения компетенций	
не выполнены или выполнены неверно.	

3. Типовые контрольные задания или иные материалы, необходимые для оценки уровня достижения компетенций в соответствии с индикаторами

1.Задания для проверки выполнения ИДК по дисциплине

Компетенция		Индикатор достижения компетенции	
ПК-13 Способен проводить выбор методов	И	ПК-13.1 Применяет методы и способы	
способов обеспечения экологической и обеспечения экологической и технической			
технической безопасности производства	безопасности производства		

ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ

по дисциплине «Технические системы обеспечения безопасности электроустановок»

ЗАДАНИЯ ДЛЯ ПРОВЕРКИ ВЫПОЛНЕНИЯ ИДК

Задание 1

Задача по выбору параметров системы защиты внутренней электрической сети производственного объекта автоматическими выключателями с характеристикой типа С.

На рисунке 1 представлена схема электроснабжения сельского производственного объекта.

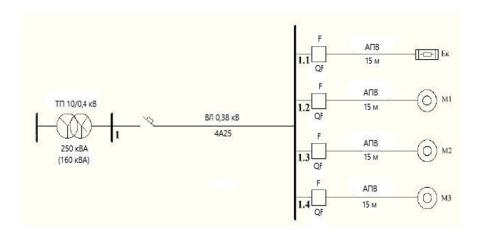


Рисунок 1 — Схема электроснабжения производственного объекта (E_{κ} — нагревательный элемент; M1, M2, M3 — электродвигатели)

Разработать мероприятия по обеспечению технической безопасности, применяя соответствующие методы и способы. Марка проводов линий внутренней сети указана на схеме, а параметры нагрузки приведены в таблице 1. Все электродвигатели — асинхронные, трехфазные с легким пуском, кратностью пускового тока 5, номинальным коэффициентом мощности $\cos \varphi = 0.8$ номинальным коэффициентом полезного действия $\Box = 0.9$. Для электронагревателя $\Box = 0.9$.

Таблица1- Параметры нагрузки производственного объекта

Мощность нагрузки, кВ т				
E _κ M1 M2 M3				
10,0	4	5,5	7,5	

Значения допустимых токов для алюминиевой электропроводки приведены в таблице 2.

Таблица 2 — Значения допустимого тока для алюминиевой электропроводки, выполненной трехжильным проводом и тремя одножильными проводами, проложенными в трубе

Сечение жилы, мм2	Допустимый ток для трехжильного провода, А	Допустимый ток для трех одножильных проводов, А
4	21	28
6	26	32
10	38	47
16	55	60
25	65	80

Для представленной схемы выбрать параметры автоматических выключателей (QF) серии BA 61F29 с характеристикой типа С на головных участках внутренней сети и по условиям согласования с параметрами защиты выбрать сечения проводов по участкам внутренней сети.

Значения номинальных токов тепловых расцепителей автоматических выключателей выбираются из ряда: 6,3; 10; 16; 20; 25; 31,5; 40; 50; 63 A.

Задание 2

Задача по выбору параметров системы защиты внутренней электрической сети производственного объекта автоматическими выключателями с характеристикой типа В

На рисунке 1 представлена схема электроснабжения сельского производственного объекта.

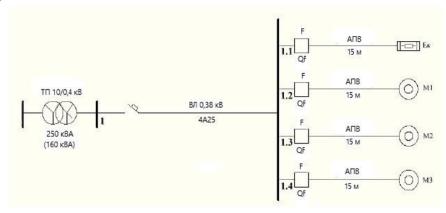


Рисунок 1 — Схема электроснабжения производственного объекта (E_{κ} — нагревательный элемент; M1, M2, M3 — электродвигатели)

Разработать мероприятия по обеспечению технической безопасности, применяя соответствующие методы и способы. Марка проводов линий внутренней сети указана на схеме, а параметры нагрузки приведены в таблице 1. Все электродвигатели — асинхронные, трехфазные с легким пуском, кратностью пускового тока 5, номинальным коэффициентом мощности $\cos \varphi = 0.8$ номинальным коэффициентом полезного действия $\eta = 0.9$. Для электронагревателя $\cos \varphi = 0.9$.

Таблица 1 - Параметры нагрузки производственного объекта

	Мощно к Е	сть нагрузки, Вт		
E _κ M1 M2 M3				
10,0	4	5,5	7,5	

Значения допустимых токов для алюминиевой электропроводки приведены в таблице 2.

Таблица 2 – Значения допустимого тока для алюминиевой электропроводки, выполненной трехжильным проводом и тремя одножильными проводами, проложенными в трубе

Сечение	Допустимый	Допустимый	
жилы,	ток для	ток для трех	
мм2	трехжильного	одножильных	
	провода, А	проводов, А	
4	21	28	
6	26	32	
10	38	47	
16	55	60	
25	65	80	

Для представленной схемы выбрать параметры автоматических выключателей (QF) серии BA 61F29 с характеристикой типа В на головных участках внутренней сети и по условиям согласования с параметрами защиты выбрать сечения проводов по участкам внутренней сети.

Значения номинальных токов тепловых расцепителей автоматических выключателей выбираются из ряда: 6,3; 10; 16; 20; 25; 31,5; 40; 50; 63 A.

Задание 3 Задача по выбору параметров системы защиты внутренней электрической сети производственного объекта предохранителями

На рисунке 1 представлена схема электроснабжения сельского производственного объекта.

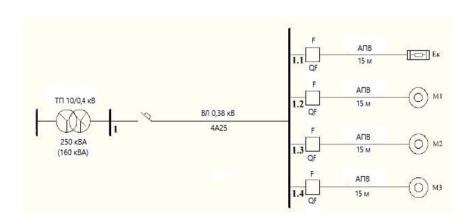


Рисунок 1 — Схема электроснабжения производственного объекта (E_{κ} — нагревательный элемент; M1, M2, M3 — электродвигатели)

Разработать мероприятия по обеспечению технической безопасности, применяя соответствующие методы и способы. Марка проводов линий внутренней сети указана на схеме, а параметры нагрузки приведены в таблице 1. Все электродвигатели — асинхронные, трехфазные с легким пуском, кратностью пускового тока 5, номинальным коэффициентом мощности $\cos \varphi = 0.8$ номинальным коэффициентом полезного действия $\eta = 0.9$. Для электронагревателя $\cos \varphi = 0.9$.

Таблица 1 - Параметры нагрузки производственного объекта

	Мощность на	агрузки, кВ т		
E _κ M1 M2 M3				
10,0	4	5,5	7,5	

Значения допустимых токов для алюминиевой электропроводки приведены в таблице 2.

Таблица 2 — Значения допустимого тока для алюминиевой электропроводки, выполненной трехжильным проводом и тремя одножильными проводами, проложенными в трубе

Сечение жилы, мм2	Допустимый ток для трехжильного провода, А	Допустимый ток для трех одножильных проводов, А
4	21	28
6	26	32
10	38	47
16	55	60
25	65	80

Для представленной схемы выбрать параметры предохранителей (F) типа ПР-2 на головных участках внутренней сети и по условиям согласования с параметрами защиты выбрать сечения проводов по участкам внутренней сети. Значения номинальных токов предохранителей выбираются из ряда:

6; 10; 15; 20; 25; 35; 45; 60 A.

Задание 4

Задача по проверке выполнения условий срабатывания автоматических выключателей в системе защиты внутренней электрической сети производственного объекта при удаленных коротких замыканиях

На рисунке 1 представлена схема электроснабжения сельского производственного объекта

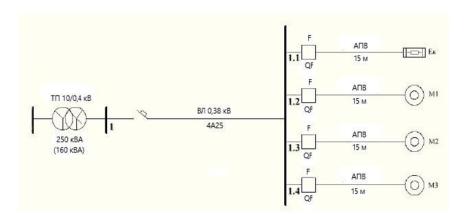


Рисунок 1 – Схема электроснабжения производственного объекта

Разработать мероприятия по обеспечению технической безопасности, применяя соответствующие методы и способы. На головных участках внутренней сети установлены автоматические выключатели (QF) BA61F29 с характеристикой типа В. Параметры выключателей приведены в таблице 1.

Таблица 1 — Номинальные токи тепловых расцепителей автоматических выключателей, A

Линия 1.1	Линия 1.2	Линия 1.3	Линия 1.4
20	25	32	40

Расчетные значения токов короткого замыкания в электрической сети, полученные с помощью комплекса СКЭД-380, представлены на рисунке 2.

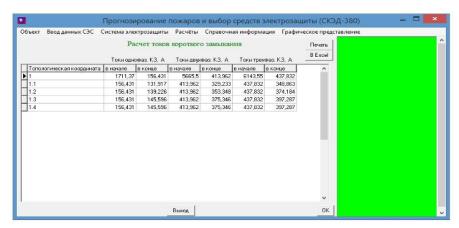


Рисунок 2 — Расчетные значения токов короткого замыкания в электрической сети

Значения расчетного времени срабатывания автоматических выключателей при коротких замыканиях представлены на рисунке 3.

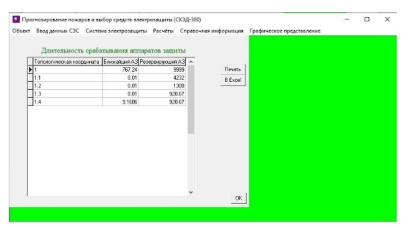


Рисунок 3 — Расчетное время срабатывания автоматических выключателей при коротких замыканиях

Проверить выполнение условий срабатывания тепловых и электромагнитных расцепителей автоматических выключателей по кратности тока короткого замыкания и соответствию нормативному времени.

Задание 5

Задача по проверке выполнения условий срабатывания предохранителей в системе защиты внутренней электрической сети производственного объекта при удаленных коротких замыканиях

На рисунке 1 представлена схема электроснабжения сельского производственного объекта.

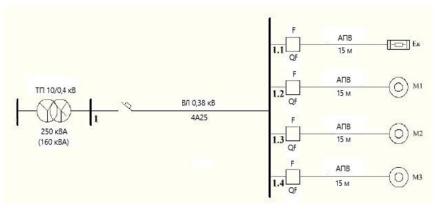


Рисунок 1 – Схема электроснабжения производственного объекта

Разработать мероприятия по обеспечению технической безопасности, применяя соответствующие методы и способы. На головных участках внутренней сети установлены предохранители (F) ПР-2. Параметры предохранителей приведены в таблице 1.

Таблица 1 – Номинальные токи плавких вставок предохранителй, А

Линия 1.1	Линия 1.2	Линия 1.3	Линия 1.4
20	15	20	35

Расчетные значения токов короткого замыкания в электрической сети, полученные с помощью комплекса СКЭД-380, представлены на рисунке 2.

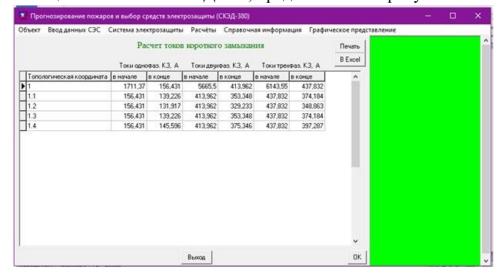


Рисунок 2 — Расчетные значения токов короткого замыкания Значения расчетного времени срабатывания предохранителей при коротких замыканиях представлены на рисунке 3.

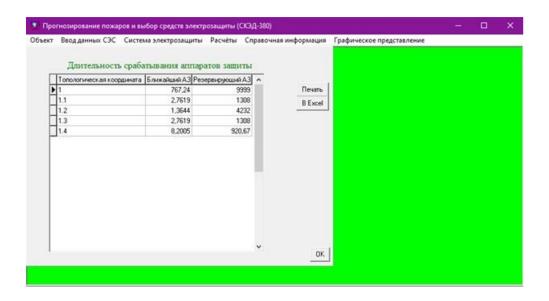


Рисунок 3 – Расчетное время срабатывания предохранителей

Проверить выполнение условий срабатывания предохранителей по кратности тока короткого замыкания и соответствию нормативному времени.

Задание 6

Задача по оценке эффективности использования устройств защитного отключения для снижения пожарной опасности коротких замыканий

Разработать мероприятия по обеспечению технической безопасности, применяя соответствующие методы и способы. Пожарная опасность k-го вида короткого замыкания (КЗ) в электрической сети на объекте низковольтного электроснабжения в течение времени Т количественно характеризуется показателем пожарной опасности, определяемым по формуле:

$$P^K(\Pi)] = P_T^{K(k)} K^{\mathsf{H3}(k)}$$

где $P_T^{K(k)}$ — вероятность КЗ k-го вида в электрической сети в течение времени T (обычно за 1 год);

 $K^{n_3(k)}$ - коэффициент незащищенности электрической сети.

Интегральный показатель пожарной опасности, характеризующий вероятность возникновения хотя бы одного пожара на объекте из-за короткого замыкания в сети, независимо от вида КЗ, определяется по формуле:

$$P_{\Sigma}^K(\Pi) = 1 - [1 - P^{K1}(\Pi)][1 - P^{K2}(\Pi)][1 - P^{K3}(\Pi)][1 - P^{KK}(\Pi)]$$

где $P^{K1}(\Pi)$, $P^{K2}(\Pi)$, $P^{K3}(\Pi)$, $P^{KK}(\Pi)$ - соответственно показатели пожарной опасности однофазного, двухфазного, трехфазного КЗ и однофазного КЗ на открытые проводящие части (на корпус).

В результате проведенных расчетов с помощью комплекса СКЭД – 380 установлено, что показатели пожарной опасности однофазного, двухфазного, трехфазного КЗ и однофазного КЗ на корпус соответственно равны: 0,02;

0,015; 0,01; 0,09.

Требуется определить, во сколько раз снижается пожарная опасность коротких замыканий на объекте электроснабжения, если вся электрическая сеть защищена устройствами защитного отключения (УЗО) и если УЗО защищают только половину протяженности всей низковольтной электрической сети.

Задание 7

Задача по выбору оптимальной системы электрической защиты сети электроснабжения производственного объекта из десяти возможных вариантов

Разработать мероприятия по обеспечению технической безопасности, применяя соответствующие методы и способы. Система электрической защиты сети электроснабжения производственного объекта с использованием автоматических выключателей и предохранителей может быть сформирована по 10 различным вариантам, отличающимися структурой и параметрами защитных аппаратов.

В таблице 1 приведены результаты расчета показателей пожарной опасности коротких замыканий и вероятностей смертельных электропоражений (показателей электробезопасности) на объекте в течение года по каждому из вариантов системы защиты.

Таблица 1 - Результаты расчета показателей пожарной опасности и электробезопасности для 10 вариантов системы защиты

№ варианта	1	2	3	4	5
Показ атель пожарной опасности $P(\Pi)$	0,01	0,01	0,00	0,01	0,02 722
Вероя тность электропор ажения $P(Э\Pi)$	6,00 3□10 ⁻⁶	5,59 0□10 ⁻⁶	4,27 9□10 ⁻⁶	6,19 7□10 ⁻⁶	4,51 3□10 ⁻⁶
№ варианта	6	7	8	9	10
Показ атель пожарной опасности $P(\Pi)$	0,01	0,01	0,01	0,01	0,01
Вероя тность электропор ажения $P(\Im\Pi)$	3,45 8□10 ⁻⁶	0,71 1□10 ⁻⁶	1,42 1□10 ⁻⁶	3,20 6□10 ⁻⁶	4,50 9□10 ⁻⁶

Выбор оптимального варианта системы электрической защиты, отвечающего условиям минимизации опасности пожаров и электропоражений (максимизации уровня электропожаробезопасности), по обоим показателям может быть произведен с помощью аддитивного критерия оптимальности системы электропожаробезопасности $F_{CЭПБ}(X) = f_1(X) + f_2(X)$,

где $f_1(X)$ и $f_2(X)$ - соответственно нормированные показатели пожарной опасности и электробезопасности по каждому из вариантов.

В таблице 2 приведены результаты расчета показателей $f_1(X)$ и $f_2(X)$ по 10 вариантам системы защиты.

Таблица 2 — Результаты расчета нормированных показателей электропожаробезопасности по 10 вариантам

№ варианта	f ₁ (X)	F ₂ (X)
1	0,9646	0,8589
2	0,8894	1,0000
3	0,6504	0,0000
4	1,0000	0,6072
5	0,6930	0,0000
6	0,5007	1,0000
7	0,000	0,9195
8	0,1294	0,6328
9	0,4548	1,0000
10	0,6923	1,0000

Используя численные данные, приведенные в таблицах 1и 2 требуется определить:

- наилучший и наихудший варианты системы защиты по критерию пожарной опасности коротких замыканий;
 - наилучший и наихудший варианты системы защиты по критерию электробезопасности;
- оптимальный и наихудший варианты системы защиты по аддитивному критерию оптимальности системы электропожаробезопасности.

4. Файл и/или БТЗ с полным комплектом оценочных материалов прилагается.