ПРИЛОЖЕНИЕ А ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Механика разрушения анизотропных материалов»

1. Перечень оценочных средств для компетенций, формируемых в результате освоения дисциплины

Код контролируемой компетенции	Способ оценивания	Оценочное средство
ПК-3: Способен обоснованно (осмысленно) использовать знания основных типов неметаллических и композиционных материалов различного назначения, в том числе наноматериалов для решения профессиональных задач	Экзамен	Комплект контролирующих материалов для экзамена
ПК-5: Способен осуществлять анализ новых технологий производства материалов и разрабатывать рекомендации по составу и способам обработки композиционных конструкционных и иных материалов с целью повышения их конкурентоспособности	Экзамен	Комплект контролирующих материалов для экзамена

2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

Оцениваемые компетенции представлены в разделе «Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций» рабочей программы дисциплины «Механика разрушения анизотропных материалов».

При оценивании сформированности компетенций по дисциплине «Механика разрушения анизотропных материалов» используется 100-балльная шкала.

Критерий	Оценка по 100-	Оценка по
	балльной шкале	традиционной шкале
Студент освоил изучаемый материал (основной и дополнительный), системно и грамотно излагает его, осуществляет полное и правильное выполнение заданий в соответствии с индикаторами достижения компетенций, способен ответить на дополнительные вопросы.	75-100	Отлично
Студент освоил изучаемый материал, осуществляет выполнение заданий в соответствии с индикаторами достижения компетенций с непринципиальными ошибками.	50-74	Хорошо
Студент демонстрирует освоение только основного материала, при	25-49	Удовлетворительно

выполнении заданий в соответствии с индикаторами достижения компетенций допускает отдельные ошибки, не способен систематизировать материал и делать выводы.		
Студент не освоил основное	<25	Неудовлетворительно
содержание изучаемого материала,		
задания в соответствии с		
индикаторами достижения компетенций		
не выполнены или выполнены неверно.		

3. Типовые контрольные задания или иные материалы, необходимые для оценки уровня достижения компетенций в соответствии с индикаторами

1.Механика разрушения анизотропных материалов. Проверка ПК -3.1 и 3.2, ПК-5.1 и 5.2

Компетенция	Индикатор достижения компетенции
ПК-3 Способен обоснованно (осмысленно)	ПК-3.1 Устанавливает связь состава,
использовать знания основных типов	структуры и свойств материалов, в том числе
неметаллических и композиционных материалов	наноматериалов, с технологическими и
различного назначения, в том числе	эксплуатационными свойствами
наноматериалов для решения профессиональных задач	ПК-3.2 Разрабатывает рекомендации по составу и способам обработки
	конструкционных композиционных и иных
	материалов и технологии их модификации и упрочнения
ПК-5 Способен осуществлять анализ новых	ПК-5.1 Анализирует новые технологии
технологий производства материалов и	производства материалов
разрабатывать рекомендации по составу и	ПК-5.2 Применяет существующие методики
способам обработки композиционных	исследования свойств материалов и/или
конструкционных и иных материалов с целью	разрабатывает новые методики с
повышения их конкурентоспособности	использованием профессиональных баз данных

ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

«Механика разрушения анизотропных материалов» для студентов направления 22.04.01 МиТМ (МТКМ)

1. Для пластины указанного геометрического размера: выясните условия закрепления краев, определить постоянную интегрирования, записать выражения для внутренних сил, построить эпюры внутренних сил в одном из сечений: сечение x – эпюры Мх, Qх; сечение y - эпюры My, Qy. Приложение 3. Выражение для функции q(x, y) и W(x, y) и числовые значения заданы.

Спроектируйте состав и структуру слоистого анизотропного композиционного материала из N слоев для изготовления данной пластины и пересчитайте силы, действующие в сечении с учетом выбранного материал и схемы армирования каждого слоя используя данные Приложения 2,4,5. Записать выражения для внутренних сил, построить эпюры внутренних сил в одном из сечений: сечение x – эпюры Mx, Qx; сечение y - эпюры My, Qy, для спроектированного материала (ИДК ПК- 3.1, ПК- 3.2)

- **2.** Выберите технологию изготовления пластины из Приложение 6. Выбор обоснуйте. Представьте краткую схему технологического процесса. (ИДК ПК- 5.1)
- 3. Составьте программу испытаний минимального, но достаточного объема, с кратким описанием метода и требования к виду образцов. (ИДК ПК-5.2)

Приложение 1

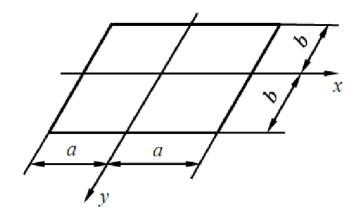


Рисунок 1 – Внешний вид пластины

Приложение 2

Механические характеристики армирующих волокон

Vanarasa	Вариант					
Упругие и прочностные	1	2	3	4		
характеристики	Стеклонить	Угленить	Органонить	Бороволокно		
E_{sl} , ГПа	70-80	300-700	130-140	300-400		
E_{s2} , ГПа	70-80	9	130-140	300-400		
G_{el2} , ГПа	24	12	20	100		
V 612	0,22	0,15	0,25-0,35	0,11		
Прочность при растяжении, $\overline{\sigma}_{\mathtt{s}1}^{+}$, МПа	2500	2400-3500	2000-2500	3000-3500		
Прочность при сжатии, $\overline{\sigma}_{\mathtt{s}1}^{-}$, МПа	-	-	-	-		
Предельное удлинение, %	3,0-3,5	1,0	2-4	≤ 1,0		
Продольный коэффициент линейного термического расширения $\alpha_{s1} \cdot 10^6 1 ^{\circ}C$	5-10	-0,5	2-3	7		
Поперечный КЛТР $\alpha_{s2} \cdot 10^6 1/^{\circ} C$	5-10	5	2-3	7		
Плотность $\rho_{\rm b}$, г/см ³	2,45-2,55	1,7-1,9	1,44	2,7		

Методические указания к расчету пластины

На основе гипотез технической теории расчёта пластин получим, что все неизвестные перемещения U, V; деформации ξ_x , ξ_y , γ_{xy} ; напряжения σ_x , σ_y , τ_{xy} , τ_{zy} , τ_{zx} будут выражены через прогиб — W(x, y). Его находим из решения дифференциального уравнения равновесия пластины при изгибе (уравнение Софи Жермен):

$$\frac{\partial^4 W}{\partial x^4} + 2 \frac{\partial^4 W}{\partial x^2 \partial y^2} + \frac{\partial^4 W}{\partial y^4} = \frac{q(x, y)}{D},\tag{3.1}$$

где

$$D = \frac{Eh^3}{12(1-v^2)} (\kappa \mathbf{H} \cdot \mathbf{m}),$$

цилиндрическая жёсткость поперечного сечения пластины.

Внутренние силы (статический эквивалент напряжений) определяем по формулам:

а) интенсивность изгибающих моментов в поперечных сечениях с нормалями x и y соответственно:

$$M_{x} = -D\left(\frac{\partial^{2}W}{\partial x^{2}} + \nu \frac{\partial^{2}W}{\partial y^{2}}\right); M_{y} = -D\left(\frac{\partial^{2}W}{\partial y^{2}} + \nu \frac{\partial^{2}W}{\partial x^{2}}\right); \left(\frac{\kappa H \cdot M}{M}\right). \tag{3.2}$$

б) интенсивность поперечных сил:

$$Q_{x} = -D\left(\frac{\partial^{3}W}{\partial x^{3}} + \frac{\partial^{3}W}{\partial x \partial y^{2}}\right); \ Q_{y} = -D\left(\frac{\partial^{3}W}{\partial y^{3}} + \frac{\partial^{3}W}{\partial y \partial x^{2}}\right); \ \left(\frac{\kappa H}{M}\right). \tag{3.3}$$

в) интенсивность крутящего момента:

$$H = -D(1 - \nu) \frac{\partial^2 W}{\partial x \, \partial y}; \left(\frac{\kappa H \cdot M}{M}\right). \tag{3.4}$$

При решении уравнения (3.1) постоянные интегрирования находим из граничных условий. Граничные условия — это аналитические выражения для кинематических и статических параметров в краевых точках. Различают такие группы граничных условий:

1. Кинематическая – известны прогибы и углы поворота сечений:

- а) сечение с нормалью x: $\alpha_x = \frac{\partial W}{\partial x}$;
- б) сечение с нормалью y: $\alpha_y = \frac{\partial W}{\partial y}$.
- 2. Статическая известны внутренние силы:
- а) сечение с нормалью $x: M_x, Q_x, H;$
- б) сечение с нормалью y: M_y , Q_y , H.
- 3. Смешанная известны часть перемещений и внутренних сил.

Запишем граничные условия для всех краёв срединной плоскости пластины:

1. При x = 0, W = 0

$$M_x = -D\left(\frac{\partial^2 W}{\partial x^2} + \nu \frac{\partial^2 W}{\partial y^2}\right) = 0 \tag{3.5}$$

- смешанная группа;
- 2. При x = a, W = 0

$$M_{x} = -D\left(\frac{\partial^{2}W}{\partial x^{2}} + \nu \frac{\partial^{2}W}{\partial y^{2}}\right) = \overline{M_{x}}$$
(3.6.)

- смешанная группа;
- 3. При y = b, $M_y = 0$

$$\alpha_{y} = \frac{\partial W}{\partial y} \tag{3.7}$$

- кинематическая группа;
- 4. При y = b, $M_v = 0$

$$\overline{Q_y} = -D\left[\frac{\partial^3 W}{\partial x^3} + (2 - \nu)\frac{\partial^3 W}{\partial y^3}\right] = 0$$
(3.8)

- статическая группа,

где $\overline{\mathcal{Q}_{_{\mathcal{Y}}}}$ - интенсивность приведенной поперечной силы.

Приложение 4

Механические характеристики связующих

	Вариант							
Упругие	1	2	3	4	5	6	7	8
и проч- ностные характе- ристики	Поли эфир- ное связу ющее	Эпок- сидно е связу- ющее	Эпоксифе нольное связу- ющее	Фенолформальд егидное связующее	Полипро пилен	Полиимид ное свя- зующее	Алюминие вый сплав	Магние вый сплав
$E_{\scriptscriptstyle M}$, ГПа	2,1- 4,6	2,8- 4,2	2,8-4,1	2,8-4,6	2	4	70	40
$G_{_{\!M}}$, ГПА	1,0- 1,9	0,8- 1,5	1,1-1,6	1,0-1,4	-	-	-	-
$V_{_M}$	0,35- 0,42	0,34- 0,4	0,33-0,4	0,35	0,4	0,4	0,34	0,3-0,35
Прочност ь при растя- жении, $\overline{\sigma}_{_{M1}}^{+}$, МПа	42-70	28-91	33-86	42-63	25-40	100	100-480	120-200
Прочност ь при сжатии, ¬¬, МПа	-	-	-	-	-	114	-	-
Прочност ь при сдвиге, $\overline{\tau}_{_{M12}}$, МПа	-	-	-	-	-	-	-	-
КЛТР $\alpha_{\scriptscriptstyle M} \cdot 10^6$ $1/\ ^{\circ}C$	55	55	55	55	110	50	25	26
Предель- ное удли- нение, %	6	2-6	1,8-3,2	1,5-2,0	10-20	5	8-12	8-12
Плот- ность $\rho_{_{B}}$, $_{\Gamma/CM}^{3}$	1,2	1,2	1,2	1,2	0,9-0,91	1,2	2,7	1,7

Приложение 5 ХАРАКТЕРИСТИКИ ОСНОВНЫХ ВИДОВ ТКАННЫХ АРМИРУЮЩИХ МАТЕРИАЛОВ

Природа, марка,	рода, марка, Тип перепле-		Толщина	Плотность ук Толщина h, мм		Средняя прочность σ^* , $\Gamma \Pi a$		Разрывная нагрузка при растяжении, кг		Относительная де- формация е, %
тип материала	тения	m, кг/м ²	п, мм	основа	уток	основа	уток	основа	уток	
1 Стеклянные										
1.1 Ткани - марка Т - марка А - марка Э - марка ТСФ - марка ТСУ, ТУ, ТС - марка МТТС	сатин 8/3 сатин 5/3 полотно полотно - - полотно	0,29 0,37-0,39 0,29-0,31 0,07-0,11 0,03-0,105 0,25-0,65 0,29-0,3	0,23÷0,25 0,3 0,27-0,29 0,06-0,1 0,025-0,1 0,33 0,26-0,47	187 229÷238 173 34-54 200-360 160-200 144-170	104 135÷140 108÷10 27-54 200-320 90-150 104-144	0,2÷0,24 - - 0,13-0,22	0,19-,024 0,17-0,24 - - 0,13-0,22	160-175 28 10-30 120-300	85-115 85-115 85-115 20 7-30 80-150	- - - - - -
	сатин 8/3 трехмер.	0,32 2,1	0,27 2,2	134	179	0,33 0,25	0,43 0,18	-	-	-
1.2 Сетка из кру- ченых нитей										
-марка ССЭ, ССТЭ -марка РС -марка ССХ	-	0,04-0,24 0,12-0,25 0,35	0,025-0,06 - -	160-134 40-70 50	90-150 50-70 50	- - -	- - -	10-110 50-100 180	3-100 11-80 170	- - -
1.3 Сетка из не- крученых нитей	5 прядей ровница по основе и 4; 5;	0,81-0,87	0,76-0,85	60	60-120	0,7	0,56-0,7	-	-	-
	2.5 прядей по утку									
1.4 Лента шири- ной 8-50	-	-	0,027-0,25	180-360	280-300	-	-	4-23	-	-
2. Органические арамидные 2.1 -марка СВМ	полотно рогожка 2/2 сатин 8/3	0,11 0,11-0,18 0,16	0,13-0,45 0,2-0,35 0,4	26,5-142 43-59 75	30-142 44-74 69	0,24-0,39 0,26 0,26	0,27-0,39 0,26-0,31 0,21	-	-	9-14 10-11 9-12
2.2 Кевлар 49	полотно сатин саржа 3/1	0,21-0,23 0,17 0,17-0,19	0,11-0,33 0,254 0,25-0,33	170-340 500 170-1000	170-340 500 170-200	0,44-1,2 1,23 1,14-2,3	0,44-1,2 1,23 0,22-0,52	- - -	- - -	- - -
2.3 Лента	-	0,17	0,35	168	23,7	71	-	-	75	-
3. Углеродные										
3.1 Ткани из пряж -марка Торнел -марка Геркулес -марка Файберайт -марка Рейксил	сатин полотно сатин сатин 8/3 полотно сатин полотно	0,28-0,51 0,193 0,37 0,356 0,128 0,186 0,194	0,38-0,7 0,27 0,39 0,43 0,18 0,25 0,25	860-1600 1250 430 - - -	820-1480 - - - - - -	- - - - -	- - - - -	116-220 - - - - - -	108-236 - - - - - - -	- - - - -
4. Высокосиликат-						-				
-из пряжи 82 -пряжи 84	сатин 8/3 сатин 8/3	0,35 0,63	0,33 0,66	200	160			13,3 31,1	11,1 20	
5. Кварцевые ткани -из пряжи 581 -из пряжи 570	сатин 8/3 сатин 8/3	0,28 0,66	0,28 0,69	220 150	210 90	- -	-	82,3 213,5	75,6 177,9	-
6. Асбестовые ткани -марки АГ (хлопок 10-18%)	полотно	0,9-1,6	1,4-2,5	0,6*-0,82*	90	-	-	65-225	27-60	-
7. X/б ткани -легкие -средние	Полотно Саржа Сатин	0,15 до 0,3 более 0,3	- - -	2,5-3,8* 2-3,8 1	2,4-3,6* 1,6 0,48	- 2,4 -	- 35-120	34-40 32-40 800	23-40 - 134	- - -
-тяжелые										

^{* -} число нитей на 10 см

Приложение 6 Основные технологические процессы формообразования изделий из ВПКМ

Технологический процесс	Применение
контактное формование: • ручная выкладка	Применяется для изготовления крупногабаритных малонагруженных деталей сложной конфигурации: коробчатых кожухов механизмов, баков, корпусов и других элементов лодок, катеров и пр.
• автоматическая выкладка	Технологии автоматизированной выкладки ленты ATL (Automated Tape Laying) и автоматизированной выкладки волокон AFP (Automated Fiber Placement). Суть обоих методов заключается в том, что на формующую оснастку происходит выкладка роботом ленты препрега (ATL) или пропитанных волокон (AFP). После окончания процесса формующую оснастку с уложенным в ней препрегом отправляют в автоклав для отверждения связующего и конечной фиксации формы изделия.
• напыление	Наполнитель дозируют вместе со связующим непосредственно в форму, после чего выложенную композицию прикатывают роликом
VARI инжекция с применением	Суть метода автоклавного формования заключа-
мембраны:	ется в выкладке предварительно раскроенного
вакуумное	препрега в форму, которую затем помещают в ва-
вакуумное-автоклавное	куумный мешок и откачивают воздух. За счет вакуумировования мешка с препрегом происходит частичное удаление летучих компонентов и воздушных включений, что обеспечивает низкую пористость получаемого изделия и равномерность его свойств в объеме. Далее вакуумированный мешок с формующей оснасткой подается во внутреннее пространство автоклава.
формообразование давлением:	Суть метода заключается в выкладке сухого арми-
пропитка под давлением	рующего наполнителя на формующую полость,
1	
пропитка в вакууме (RTM инжекция в закрытую форму, вакуумный RTM)	сборке и герметизации оснастки, и подаче связующего под давлением в форму. Процесс пропитки продолжается до тех пор, пока связующее полностью не заполнит рабочее формообразующее пространство.
пропитка в вакууме (RTM инжекция в закрытую форму, вакуумный RTM) пропитка пленочным	щего под давлением в форму. Процесс пропитки продолжается до тех пор, пока связующее полностью не заполнит рабочее формообразующее пространство.
пропитка в вакууме (RTM инжекция в закрытую форму, вакуумный RTM)	щего под давлением в форму. Процесс пропитки продолжается до тех пор, пока связующее полностью не заполнит рабочее формообразующее про-

	кроенного наполнителя и термореактивной композиции в виде пленки; подготавливается технологический пакет; в зависимости от требований к конечному продукту проводится формование либо в условиях разрежения в печи, либо при избыточном давлении в автоклаве.
вакуумная инфузия VARTM	В основе метода лежит процесс пропитки армирующего наполнителя связующим, движущимся за счет разницы давления. Эту разницу давлений обеспечивает разрежение, создаваемое в вакуумном мешке, в котором находятся формующая оснастка и наполнитель, с помощью вакуумного насоса. В результате возникновения градиента давлений связующее из емкости поступает в формующую полость и равномерно пропитывает находящийся там сухой армирующий материал.

4. Файл и/или БТЗ с полным комплектом оценочных материалов прилагается.