Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФСТ С.Л. Кустов

Рабочая программа дисциплины

Код и наименование дисциплины: Б1.В.2 «Современные технологические комплексы»

Код и наименование направления подготовки (специальности): 15.04.01 Машиностроение

Направленность (профиль, специализация): Оборудование и технология сварочного производства

Статус дисциплины: часть, формируемая участниками образовательных отношений

Форма обучения: очная

Статус	Должность	И.О. Фамилия
Разработал	доцент	Б.И. Мандров
	Зав. кафедрой «МБСП»	М.Н. Сейдуров
Согласовал	руководитель направленности (профиля) программы	М.Н. Сейдуров

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора	
ПК-6	Способен разрабатывать технологические процессы по сварке и родственным	ПК-6.2	Рассчитывает и отрабатывает технологические режимы и параметры сварки конструкций (изделий, продукции) любой сложности	
	технологиям	ПК-6.3	Способен описывать новые технологические процессы	

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики), Инновационные	технологии	сварочных процессов
предшествующие изучен	ИЮ		
дисциплины, результа	ТЫ		
освоения которых необходи	МЫ		
для освоения данн	ой		
дисциплины.			
Дисциплины (практики), д	пя Современные	проблемы	машиностроительного
которых результаты освоен	ия производства		
данной дисциплины буд	ут		
необходимы, как входн	ые		
знания, умения и владен	Я		
для их изучения.			

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 10 / 360

	Виды занятий, их трудоемкость (час.)				Объем контактной
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
очная	32	48	16	264	130

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 2

Объем дисциплины в семестре з.е. /час: 5 / 180

Форма промежуточной аттестации: Зачет

Виды занятий, их трудоемкость (час.)			Объем контактной работы	
Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	обучающегося с преподавателем (час)
16	16	0	148	54

Лекционные занятия (16ч.)

- 1. Вводные понятия и определения {беседа} (2ч.)[1,2,3,4,5,6,7,8] Применение промышленных технологических комплексов для решения проблемы повышения производительности труда и качества продукции в машиностроении.
- 2. Классификация технологических комплексов и ГПС. {дискуссия} (2ч.)[1,2,3,4,5,6,7,8] Принципы, используемые при классификации технологических комплексов (ТК).
- 3. Уровни механизации и автоматизации производства {беседа} (2ч.)[1,2,3,4,5,6,7,8] Уровни механизации и автоматизации, учитываемые при формировании технологических комплексов
- 4. Структура производственных систем {дискуссия} (2ч.)[1,2,3,4,5,6,7,8] Функциональная структура производственных систем
- 5. Поточные механизированные и автоматизированные линии в сварочного производства {дискуссия} (2ч.)[1,2,3,4,5,6,7,8] Классификация поточно-механизированных и автоматизированных производственные линии. Преимущества поточных механизированных и автоматизированных линий перед другими видами организации производства
- 6. Технологические процессы реализуемые при изготовлении сварных конструкций на поточных механизированных и автоматизированных линиях {беседа} (2ч.)[1,2,3,4,5,6,7,8] Структура технологических процессов при изготовлении сварных конструкций.

Сварочные технологические процессы

- 7. Проектирование технологических сварочных и родственных процессов {дискуссия} (2ч.)[1,2,3,4,5,6,7,8] Виды документов используемых при описание сварочных технологических процессов. Термины, определения, параметры технологических процессов
- 8. Технологическая оснастка, используемая при изготовлении сварных конструкций (беседа) (2ч.)[1,2,3,4,5,6,7,8] Связь технологического процесса с типом производства и технологическим оснащением. Технологическая оснастка, используемая при изготовлении сварных конструкций

Лабораторные работы (16ч.)

- 1. Изучение формирования сварного шва при автоматической сварке под слоем флюса {работа в малых группах} (4ч.)[1,2,3,4,5,6,7,8] Определение факторов, влияющих на формирование шва при автоматической сварке под слоем флюса
- 2. Изучение формирования шва при механизированной сварке в защитных газах и их смесях {работа в малых группах} (4ч.)[1,2,3,4,5,6,7,8] Определение факторов, влияющих на формирование шва при механизированной сварке в защитных газах и их смесях
- 3. Изучение формирования швов в различных пространственных

положениях при ручной дуговой сварке {работа в малых группах} (4ч.)[1,2,3,4,5,6,7,8] Определение фактов, влияющих на формирование швов в различных пространственных положениях при ручной дуговой сварке

4. Изучение формирования сварных швов при экструзионной сварке конструкций из полиэтилена {работа в малых группах} (4ч.)[1,2,3,4,5,6,7,8] Определение фактов, влияющих на формирование швов при экструзионной сварке конструкций из полиэтилена

Самостоятельная работа (148ч.)

- 1. Выполнение курсового проекта {творческое задание} (88ч.)[1,2,3,4,5,6,7,8] Выполнение курсового проекта по темам, связанным с проектированием технологического процесса сборки и сварки сварной конструкции
- 2. Подготовка докладов для выступления на практических занятиях {творческое задание} (20ч.)[1,2,3,4,5,6,7,8] Выполнение рефератов и подготовка докладов по темам, связанным со сваркой и родственным процессам
- 3. Подготовка к зачету {творческое задание} (40ч.)[1,2,3,4,5,6,7,8] Подготовка к сдаче зачета

Семестр: 3

Объем дисциплины в семестре з.е. /час: 5 / 180

Форма промежуточной аттестации: Экзамен

Виды занятий, их трудоемкость (час.)			Объем контактной работы	
Лекции	Лекции Лабораторные Практические Само занятия		Самостоятельная работа	обучающегося с преподавателем (час)
16	32	16	116	76

Лекционные занятия (16ч.)

- 1. Использование промышленных роботов в сварочном производстве {дискуссия} (2ч.)[1,2,4,5,6,7,8] Термины и определения. Целесообразность применения роботов в заготовительном, сборочном и сварочном циклах при изготовлении сварных конструкций
- 2. Классификация роботов. Особенности выбора роботов {беседа} (2ч.)[1,2,3,4,5,6,7,8] Современные фирмы-производителей роботов
- 3. Структура промышленного робота {дискуссия} (2ч.)[1,2,3,4,5,6,7,8] Структура промышленных роботов, Механическая система промышленных роботов
- 4. Механическая система промышленных роботов {дискуссия} (2ч.)[1,2,3,4,5,6,7,8] Основные элементы механических систем роботов и выполняемые ими функции
- 5. Технологические комплексы комплексы для дуговой сварки {просмотр и обсуждение видеофильмов, спектаклей, выставок} (2ч.)[1,2,3,4,5,6,7,8] Основные элементы комплексов для дуговой сварки и выполняемые ими

функции

- 6. Технологические комплексы для контактной сварки {дискуссия} (2ч.)[1,2,3,4,5,6,7,8] Основные элементы комплексов для контактной сварки и выполняемые ими функции
- 7. Транспортно-складочные системы технологических комплексов {дискуссия} (2ч.)[1,2,3,4,5,6,7,8] Состав и основные задачи транспортно-складочных систем технологического комплекса
- 8. Надежность и охрана труда технологических комплексов {беседа} (2ч.)[1,3,4,5,6,7,8] Опасные факторы при использовании технологических комплексов. Защита персонала и контроль работы технологического комплекса. Надежность технологических комплексов

Практические занятия (16ч.)

- 1. Пути повышения эффективности машиностроительного производства. Основные понятия. {беседа} (2ч.)[1,2,3,4,5,6,7,8] Термины и определения. Целесообразность применения роботов в заготовительном, сборочном и сварочном циклах при изготовлении сварных конструкций
- 2. Эффективность повышения уровня механизации и автоматизации производства {дискуссия} (2ч.)[1,2,3,4,5,6,7,8] Понятие о механизации и автоматизации и производства. Этапы механизации и автоматизации производства. Связь между уровнем механизации и автоматизации и типом производства.
- 3. Основные классификационные признаки технологических машиностроительных комплексов. {дискуссия} (2ч.)[1,2,3,4,5,6,7,8] Анализ конструкции изготавливаемого изделия и выбор конструктивной схемы технологического комплекса из базы данных.
- гибкой Элементы структуры технологического комплекса И ячейки {дискуссия} (24.)[1,2,3,4,5,6,7,8] Разбивка производственной технологического процесса на производства (заготовительное, сборочное, сварочное отделочное) установление требуемой комплектности И производства
- 5. Электротехническое сварочное оборудование технологических комплексов. {работа в малых группах} (2ч.)[1,2,3,4,5,6,7,8] Функциональный принцип классификации сварочное оборудование
- 6. Механическое оборудование технологических комплексов {работа в малых группах} (2ч.)[1,2,3,4,5,6,7,8] Функциональный принцип классификации механического оборудование технологических комплексов
- 7. Анализ конструкции сварного изделия и выбор структурной схемы сварочного технологического комплекса {работа в малых группах} (24.)[1,2,3,4,5,6,7,8] конструкций основным Деление сварных ПО (оболочковые), **КОНСТРУКТИВНЫМ** признакам ()стержневые, листовые решетчатые, детали и узлы машин и т.п..
- 8. Разработка проекта технологии сборки и сварки металлической конструкции {творческое задание} (2ч.)[1,2,3,4,5,6,7,8] Разбивка конструкции

конструктивной отдельные определение СЛОЖНОСТИ **V3ЛЫ**, изделия основного способа сварки (резки) (узла). Определение конструкции, сборки конструкции, разработка разработка схемы технологии технологических переходов выбор типовой схемы технологического комплекса..

Лабораторные работы (32ч.)

- 1. Изучение основных характеристик робототехнического комплекса и элементов (ртк) на базе промышленного робота fanuc robot arc mate 100ic, ориентирующих сварочную горелку относительно стыка и обеспечивающих персонала **{работа в малых группах}** (4ч.)[1,2,3,4,5,6,7,8] промышленного робота. Ознакомление C типовой структурной схемой элементов основных технических характеристик И робототехнического комплекса на базе промышленного робота FANUC Robot ARC Mate 100iC
- 2. Изучение датчиков промышленного робота FANUC Robot ARC Mate 100iC, контролирующих давление защитного газа, наличие проволоки и предотвращающих столкновения механических систем робота с препятствиями. {работа в малых группах} (4ч.)[1,2,3,4,5,6,7,8] Изучение типов и принципов работы датчиков, используемых в промышленном роботе FANUC Robot ARC Mate 100iC.
- 3. Проектирование 3d моделей деталей сварной конструкции и оснастки технологического комплекса {работа в малых группах} (4ч.)[1,2,3,4,5,6,7,8] Проектирование принципиальной схемы принципиальной схемы и 3D моделей деталей оснастки технологического комплекса
- 4. Разработка 3d модель сборки оснастки промышленного комплекса {работа в малых группах} (4ч.)[1,2,3,4,5,6,7,8] Используя схему сборки сварной конструкции разработать 3D модель сборки оснастки технологического комплекса
- 5. Экспериментальное определение перемещений в деталях сварной конструкции (работа в малых группах) (4ч.)[1,2,3,4,5,6,7,8] Выбрать параметры режима сварки, установить устройство для контроля деформаций, произвести сварку, экспериментально определить деформации деталей сварной конструкции
- 6. Проведение компьютерного анализа перемещений деталей 3D модели сварной конструкции при сборке и сварке в оснастке промышленного комплекса {работа в малых группах} (4ч.)[1,2,3,4,5,6,7,8] Используя возможности программного продукта определить деформации деталей сварной конструкции
- 7. Сравнительный анализ экспериментальных перемещений и перемещений компьютерного моделирования {работа в малых группах} (4ч.)[1,2,3,4,5,6,7,8] Произвести сравнение экспериментальных и данных компьютерного моделирования. Оценить полученные результаты и выбрать окончательный вариант проектирования оснастки.

8. Сравнительный анализ экспериментальных перемещений и перемещений компьютерного моделирования {работа в малых группах} (4ч.)[1,2,3,4,5,6,7,8] Произвести сравнение экспериментальных и данных компьютерного моделирования.

Оценить полученные результаты и выбрать окончательный вариант проектирования оснастки

Самостоятельная работа (116ч.)

- 1. Подготовка к практическим занятиям {«мозговой штурм»} (26ч.)[1,2,3,4,5,6,7,8] Подготовка материалов для работы по темам занятий
- 2. Подготовка докладов для выступления на практических занятиях по темам занятий (творческое задание) (20ч.)[1,2,3,4,8] Выполнение рефератов и подготовка докладов по темам, связанным с темами практических занятий
- 3. Подготовка к проектным лабораторным работам {творческое задание} (30ч.)[1,2,3,4,5,6,7,8] Подготовка к выполнению творческого задания во время проектных лабораторных работ
- 4. Подготовка к экзамену {творческое задание} (40ч.)[1,2,3,4,5,6,7,8] Подготовка к сдаче экзамена
- 5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

1. Мандров Б.И., Киселев В.С., Современные технологические комплексы. Методические указания к лабораторным работам для студентов направления 15.04.01 «Машиностроение», направленность (профиль) «Оборудование и технология сварочного производства» / Б.И. Мандров В.С. Киселев ; Алт. гос. тех. ун-т им. И.И. Ползунова. - Барнаул : Изд-во АлтГТУ . - 2020. - 17 с. Прямая

http://elib.altstu.ru/eum/download/mbsp/Mandrov STK mu.pdf

2. Романов, П. С. Автоматизация производственных процессов в машиностроении. Проектирование гибкой производственной системы. Лабораторный практикум : учебное пособие / П. С. Романов, И. П. Романова ; под общей редакцией П. С. Романова. — 2-е изд., испр. — Санкт-Петербург : Лань, 2019. — 156 с. — ISBN 978-5-8114-3604-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/119620 (дата обращения: 07.12.2020). — Режим доступа: для авториз. пользователей.

6. Перечень учебной литературы

- 6.1. Основная литература
- 3. Денисенко, В. В. Компьютерное управление технологическим процессом, экспериментом, оборудованием / В. В. Денисенко. Москва : Горячая линия-Телеком, 2014. 606 с. ISBN 978-5-9912-0060-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/111051 (дата обращения: 07.12.2020). Режим доступа: для авториз. пользователей.

6.2. Дополнительная литература

- 4. Климов, А. С. Роботизированные технологические комплексы и автоматические линии в сварке: учебное пособие для вузов / А. С. Климов, Н. Е. Машнин. 4-е изд., стер. Санкт-Петербург: Лань, 2021. 236 с. ISBN 978-5-8114-6792-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/152449 (дата обращения: 07.12.2020). Режим доступа: для авториз. пользователей.
- 5. Оборудование и основы технологии сварки металлов плавлением и давлением: учебное пособие для вузов / Г. Г. Чернышов, Д. М. Шашин, В. И. Гирш [и др.]; под редакцией Г. Г. Чернышова, Д. М. Шашина. 3-е изд., стер. Санкт-Петербург: Лань, 2021. 464 с. ISBN 978-5-8114-6853-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/152649 (дата обращения: 19.12.2020).
- 6. Сварочные процессы и оборудование Шабалин В.Н. (МБСП) 2014 Методические указания, 4.08 МБ Дата первичного размещения: 29.01.2014. Обновлено: 29.03.2016. Прямая ссылка: http://elib.altstu.ru/eum/download/mbsp/Shabalin-
- spo.pdf
 7. Технологическая подготовка производства
 Чепрасов Д.П. (МБСП) Шабалин В.Н. (МБСП)
 2017 Учебное пособие, 1.33 МБ
 Дата первичного размещения: 20.03.2017. Обновлено: 20.03.2017.
 Прямая

 ссылка:
- http://elib.altstu.ru/eum/download/mbsp/Cheprasov_tpp.pdf
 7. Перечень ресурсов информационно-телекоммуникационно
- 7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
- 8. Научно-техническая библиотека Алтайского государственного технического университета им. И.И. Ползунова: http://astulib.secna.ru

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение
1	LibreOffice
2	Windows
3	Антивирус Kaspersky

№пп	Используемые профессиональные базы данных и информационные			
	справочные системы			
1	Национальная электронная библиотека (НЭБ)— свободный доступ читателей к фондам российских библиотек. Содержит коллекции оцифрованных документов (как открытого доступа, так и ограниченных авторским правом), а также каталог изданий, хранящихся в библиотеках России. (http://нэб.рф/)			

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы учебные аудитории для проведения учебных занятий помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».