Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФСТ Кустов С.Л.

Рабочая программа дисциплины

Код и наименование дисциплины: Б1.О.11 «Физика»

Код и наименование направления подготовки (специальности): 09.03.01

Информатика и вычислительная техника

Направленность (профиль, специализация): Программно-техническое

обеспечение автоматизированных систем

Статус дисциплины: обязательная часть

Форма обучения: заочная

Статус	Должность	И.О. Фамилия
Разработал	доцент	В.В. Романенко
	Зав. кафедрой «Ф»	С.Л. Кустов
Согласовал	руководитель направленности (профиля) программы	Л.И. Сучкова

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора
ОПК-1	Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	ОПК-1.2	Применяет естественнонаучные и/или общеинженерные знания для решения задач

2. Место дисциплины в структуре образовательной программы

предшествующие дисциплины, ре	рактики), изучению езультаты еобходимы данной	Аналитическая геометрия, Линейная алгебра и теория матриц, Математический анализ
Дисциплины (практик которых результаты данной дисциплины необходимы, как знания, умения и для их изучения.	освоения	Электроника, Электротехника

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 10 / 360

	Виды занятий, их трудоемкость (час.)				Объем контактной
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
заочная	16	20	8	316	56

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: заочная

Семестр: 3

Объем дисциплины в семестре з.е. /час: 5 / 180

Форма промежуточной аттестации: Экзамен

Виды занятий, их трудоемкость (час.)				Объем контактной работы
Лекции	Лабораторные	Практические	Самостоятельная	обучающегося с преподавателем

	работы	занятия	работа	(час)
8	10	4	158	28

Лекционные занятия (8ч.)

- 1. Изучение естественнонаучных основ. методов теоретического экспериментального исследования в физике. Модуль "Механика" {лекция с конкретных ситуаций} (2ч.)[7,10,11] Физика естественных наук. Общая структура и задачи дисциплины «Физика». Кинематика поступательного вращательного движения. Динамика поступательного и вращательного движения. Законы сохранения в механике
- 2. Изучение естественнонаучных основ, методов теоретического и экспериментального исследования в физике. Модуль "Молекулярная физика и термодинамика"(2ч.)[7,10,11] Молекулярно-кинетическая теория идеальных газов. Первое начало термодинамики. Второе и третье начала термодинамики. Тепловые машины. Цикл Карно. Энтропия.
- Изучение естественнонаучных основ, методов теоретического экспериментального исследования электродинамике. Модуль "Электричество"(2ч.)[8,10,12] Электростатическое вакууме. поле Диэлектрики и проводники в электрическом поле. 0бъемная плотность энергии электростатического поля.
- 4. Изучение естественнонаучных основ, методов теоретического и экспериментального исследования в электродинамике. Модуль "Электричество" (с элементами электронного обучения и дистанционных образовательных технологий) (2ч.)[8,10,12] Постоянный электрический ток. Законы Ома. Закон Джоуля-Ленца. Электродвижущая сила источника тока. Правила Кирхгофа. Ток в различных средах.

Практические занятия (4ч.)

- 1. Применение физико-математического аппарата, методов теоретического исследования при решении задач по модулю "Механика"(2ч.)[11,14,15,16] Кинематика поступательного и вращательного движения. Динамика поступательного и вращательного движения. Законы сохранения
- 2. Применение физико-математического аппарата, методов теоретического исследования при решении задач по модулю "Электричество"(2ч.)[12,14,15,16] Постоянный электрический ток. Законы Ома. Закон Джоуля-Ленца. Правила Кирхгофа.

Лабораторные работы (10ч.)

1. Лабораторная работа №1. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (4ч.)[3,7,10,11] Изучение законов вращательного движения с помощью маятника Обербека. (Фронтальная работа)

- 2. Лабораторная работа №2. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (3ч.)[3,7,10,11] Модуль "Молекулярная физика и термодинамика". Лабораторная работа выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.
- 3. Лабораторная работа №3. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (3ч.)[4,8,10,12] Модуль "Электричество". Лабораторная работа выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.

Самостоятельная работа (158ч.)

- 1. Изучение теоретического материала (с элементами электронного обучения и дистанционных образовательных технологий) (131ч.)[1,2,7,8,10,11,12] Работа с конспектом лекций, учебниками и учебными пособиями
- 2. Подготовка κ лабораторным работам(10ч.)[3,7,8,10,11,12,14,15,16] Подготовка отчетов по лабораторным работам
- 3. Выполнение контрольной работы(8ч.)[7,8,11,12,14,15,16] Подготовка к выполнению контрольной работы (работа с конспектами и учебными пособиями)
- 4. Подготовка к экзамену (с элементами электронного обучения и дистанционных образовательных технологий) (9ч.)[1,2,7,8,10,11,12,14,15,16] Работа с конспектом лекций, учебниками и учебными пособиями

Семестр: 4 Объем дисциплины в семестре з.е. /час: 5 / 180 Форма промежуточной аттестации: Зачет

Виды занятий, их трудоемкость (час.)				Объем контактной работы
Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	обучающегося с преподавателем (час)
8	10	4	158	28

Лекционные занятия (8ч.)

- 1. Изучение естественнонаучных основ, методов теоретического и экспериментального исследования в электродинамике. Модуль "Магнетизм" {лекция с разбором конкретных ситуаций} (2ч.)[8,10,12] Магнитостатика: закон Био-Савара-Лапласа, силы Лоренца и Ампера.
- Электромагнитная индукция: закон Фарадея, правило Ленца. Самоиндукция. Энергия магнитного поля. Магнитные свойства вещества: диа-, пара- и ферромагнетики. Природа ферромагнетизма. Теория Максвелла для электромагнитного поля.
- 2. Изучение естественнонаучных основ, методов теоретического и экспериментального исследования. Модуль "Колебания и волны. Оптика" (с элементами электронного обучения и дистанционных образовательных технологий) (2ч.)[8,10,12] Виды колебаний, их характеристики. Сложение

колебаний. Переменный электрический ток. Метод векторных диаграмм. Волны в упругой среде. Звуковые волны. Электромагнитные волны.

- Изучение естественнонаучных основ, методов теоретического экспериментального исследования. Модуль "Колебания и волны. Оптика" {лекция с разбором конкретных ситуаций} (2ч.)[8,10,12] Волновая оптика: интерференция и дифракция света, поляризация и дисперсия законы теплового излучения, Квантовая оптика: фотоны, фотоэффект. давление света, эффект Комптона. Корпускулярно-волновой дуализм света.
- Изучение естественнонаучных основ, методов теоретического экспериментального исследования. Модуль "Элементы атомной и ядерной физики"(2ч.)[9,10,13] Атомная физика: планетарная модель атома, формула постулаты Бора. Гипотеза де Бройля. Принцип неопределенностей. Уравнение Шредингера. Элементы физики атомного ядра и элементарных частиц: состав и характеристики атомного ядра. радиоактивного излучения. Радиоактивность. Виды Ядерные реакции. Фундаментальные взаимодействия.

Практические занятия (4ч.)

- 1. Применение физико-математического аппарата, методов теоретического исследования при решении задач по темам «Магнетизм» и "Колебания и волны"(2ч.)[12,14,15,16] Магнетизм: применение закона Био-Савара-Лапласа и принципа суперпозиции к расчету магнитных полей в вакууме, сила Лоренца и сила Ампера. Электромагнитная индукция. Электромагнитные колебания.
- 2. Применение физико-математического аппарата, методов теоретического исследования при решении задач по темам «Волновая и квантовая оптика», "Элементы атомной и ядерной физики"(2ч.)[13,14,15,16] Волновая оптика: интерференция, дифракция и поляризация света. Квантовая оптика: тепловое излучение, фотоэффект, давление света, эффект Комптона. Атомная физика: теория атома Бора.

Лабораторные работы (10ч.)

- 1. Лабораторные работа №1. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (4ч.)[4,8,10,12] Модуль "Магнетизм". Лабораторная работа выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.
- 2. Лабораторная работа №2. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (3ч.)[5,8,9,10,13] Модуль "Волновая оптика". Лабораторная работа выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.
- 3. Лабораторная работа №3. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (3ч.)[5,9,10,13] Модуль "Квантовая оптика" и "Атомная физика". Лабораторная работа выполняются

Самостоятельная работа (158ч.)

- 1. Изучение теоретического материала {с элементами электронного обучения и дистанционных образовательных технологий} (136ч.)[2,8,9,10,12,13] Работа с конспектами лекций, учебниками и учебными пособиями.
- 2. Подготовка к лабораторным работам(10ч.)[4,5,8,9,10,12,13,14,15,16] Подготовка отчетов по лабораторным работам.
- 3. Выполнение контрольной работы(8ч.)[8,9,12,13,14,15,16] Подготовка к выполнению контрольной работы (работа с конспектами и учебными пособиями)
- 4. Подготовка к зачету (с элементами электронного обучения и дистанционных образовательных технологий) (4ч.)[2,8,9,10,12,13,14,15,16] Работа с конспектом лекций, учебниками и учебными пособиями
- 5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронной информационно-образовательной среде АлтГТУ:

- 1. Кустов С.Л. Лекции по физике. Механика. Молекулярная физика и термодинамика. Учебное пособие по курсу физики для студентов инженерно-технических специальностей очной и очно заочной формы обучения.- Барнаул: изд-во АлтГТУ, 2010. -130 с.,Прямая ссылка: http://elib.altstu.ru/eum/download/of/Kustov_lec_1.pdf
- 2. Кустов С.Л. Лекции по физике. Электричество и магнетизм. Учебное пособие по курсу физики для студентов очной и заочной формы обучения. Барнаул: изд-во АлтГТУ, 2013. -124 с., Прямая ссылка: http://elib.altstu.ru/eum/download/of/Kustov EM.pdf
- 3. Лабораторные работы по физике. Часть І. Механика. Молекулярная физика и термодинамика. Учебное пособие и методические указания по выполнению лабораторных работ для студентов очной формы обучения. / Разработали и составили: Андрухова О.В., Гурова Н.М., Жуковская Т.М., Кирста Ю.Б., Кустов С.Л., Науман Л.В., Пацева Ю.В., Романенко В.В., Старостенкова Н.А., Черных Е.В. Барнаул: Изд-во АлтГТУ. 2019. 46 с. Прямая ссылка:

http://elib.altstu.ru/eum/download/of/Andruhova_PhisLabsPt1_ump.pdf

4. Лабораторные работы по физике. Часть II. Электричество и магнетизм. Учебное пособие и методические указания по выполнению лабораторных работ для студентов всех форм обучения. / Разработали и составили: Гурова Н. М., Кустов С. Л., Пацева Ю. В., Романенко В. В., Черных Е. В. – Барнаул: Изд-во АлтГТУ. - 2019. – 84 с. Прямая ссылка:

- http://elib.altstu.ru/eum/download/of/Andruhova PhisLabsPt2 ump.pdf
- 5. Лабораторные работы по физике. Часть III. Колебания и волны. Оптика, атомная и ядерная физика. Учебное пособие и методические указания по выполнению лабораторных работ для студентов очной формы обучения. / Разработали и составили: Л.Н. Агейкова, А.В. Векман, Н.М. Гурова, С.Л. Кустов, В.В. Романенко, Е.В. Черных, В.Л. Орлов, М.А. Гумиров Барнаул: Изд-во АлтГТУ. 2019. 78 с. Прямая ссылка: http://elib.altstu.ru/eum/download/of/Andruhova_PhisLabsPt3_ump.pdf
- 6. Пацева Ю.В., Черных Е.В, Науман Л.В., Жуковская Т.М. Учебнометодическое пособие по выполнению расчетного задания по физике. Часть II. Магнетизм. Колебания и волны. Оптика. Атомная и ядерная физика: для студентов всех форм обучения. Барнаул: Изд-во АлтГТУ, 2020. 181 с. Прямая ссылка: http://elib.altstu.ru/eum/download/of/Paceva_FisPtIIMKVOAYaF_rz_mu.pdf

6. Перечень учебной литературы

6.1. Основная литература

- 7. Савельев, И. В. Курс общей физики / И. В. Савельев. Изд. 4-е, перераб. Москва : Наука, 1970. Том 1. Механика, колебания и волны, молекулярная физика. 505 с. : ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=477374 (дата обращения: 09.02.2023). Текст : электронный.
- 8. Савельев, И. В. Курс общей физики / И. В. Савельев. Изд. 4-е, перераб. Москва : Наука, 1970. Том 2. Электричество. 430 с. : ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=494689 (дата обращения: 09.02.2023). Текст : электронный.
- 9. Савельев, И. В. Курс общей физики / И. В. Савельев; под ред. Л. Л. Енковского. Изд. 3-е, доп., перераб. Москва: Наука, 1970. Том 3. Оптика, атомная физика, физика атомного ядра и элементарных частиц. 527 с.: ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=483316 (дата обращения: 09.02.2023). Текст: электронный.
- 10. Никеров, В. А. Физика: современный курс: учебник / В. А. Никеров. 4-е изд. Москва: Дашков и К°, 2019. 452 с.: ил. Pежим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=573262 (дата обращения: 21.02.2023). ISBN 978-5-394-03392-6. Текст: электронный.

6.2. Дополнительная литература

11. Михеев, В. А. Физика : учебное пособие : [16+] / В. А. Михеев, О. Б. Михеева, В. М. Флягин ; Тюменский государственный университет. – Тюмень : Тюменский государственный университет, 2013. –

- 419 с.: ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=567395 (дата обращения: 09.02.2023). Библиогр. в кн. ISBN 978-5-400-00812-2. Текст : электронный.
- 12. Кузнецов, С. И. Курс лекций по физике. Электростатика. Постоянный ток. Электромагнетизм. Колебания и волны: учебное пособие / Кузнецов, Л. И. Семкина, К. И. Рогозин : Российской Федерации, Национальный образования исследовательский Томский государственный университет. - Томск : Издательство Томского политехнического университета, 2016. - 290 с. : ил., табл., схем. доступа: ПО подписке. https://biblioclub.ru/index.php?page=book&id=442116 (дата обращения: 21.02.2023). - Библиогр. в кн. - ISBN 978-5-4387-0562-8. - Текст : электронный.
- 13. Барсуков, В. И. Физика. Волновая и квантовая оптика : учебное пособие / В. И. Барсуков, О. С. Дмитриев. Тамбов : Тамбовский государственный технический университет, ЭБС АСВ, 2012. 134 с. ISBN 978-5-8265-1122-О. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/63917.html (дата обращения: 21.02.2023). Режим доступа: для авторизир. пользователей
- 14. Сабылинский, А. В. Физика в задачах Ч.2. Электростатика, постоянный ток, электромагнетизм : учебное пособие / А. В. Сабылинский. Белгород : Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2019. 96 с. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/106207.html (дата обращения: 21.02.2023). Режим доступа: для авторизир. пользователей
- 15. Склярова, Е. А. Справочник по физике с примерами решения задач. Часть 1 : учебное пособие / Е. А. Склярова, Н. Д. Толмачева, С. И. Кузнецов. Томск : Томский политехнический университет, 2017. 221 с. ISBN 978-5-4387-0742-4. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/83985.html (дата обращения: 21.02.2023). Режим доступа: для авторизир. пользователей
- 16. Шейдаков, Н. Е. Физика: примеры решения типовых задач. Задания для самостоятельной работы : учебное пособие : [16+] / Н. Е. Шейдаков ; Ростовский государственный экономический университет (РИНХ). Ростов-на-Дону : Издательско-полиграфический комплекс РГЭУ (РИНХ), 2019. 246 с. : ил., граф. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=614997 (дата обращения: 09.02.2023). Библиогр. в кн. ISBN 978-5-7972-2637-6. Текст : электронный.

- 7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
 - 17. http://www.openet.edu.ru
 - 18. https://lbz.ru/metodist/iumk/physics/e-r.php
- 8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение
1	Acrobat Reader
1	LibreOffice
2	Windows
3	Антивирус Kaspersky

№пп	Используемые профессиональные базы данных и информационные		
	справочные системы		
1	Национальная электронная библиотека (НЭБ)— свободный доступ читателей к фондам российских библиотек. Содержит коллекции оцифрованных документов (как открытого доступа, так и ограниченных авторским правом), а также каталог изданий, хранящихся в библиотеках России. (http://нэб.рф/)		

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы учебные аудитории для проведения учебных занятий помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с

«Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».