ПРИЛОЖЕНИЕ А ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Теория вероятностей и математическая статистика»

1. Перечень оценочных средств для компетенций, формируемых в результате освоения дисциплины

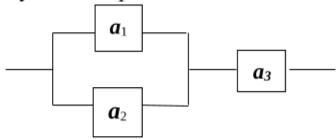
Код контролируемой компетенции	Способ оценивания	Оценочное средство	
ОПК-1: Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	Экзамен	Комплект контролирующих материалов для экзамена	
УК-1: Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	Экзамен	Комплект контролирующих материалов для экзамена	

2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

Оцениваемые компетенции представлены в разделе «Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций» рабочей программы дисциплины «Теория вероятностей и математическая статистика».

При оценивании сформированности компетенций по дисциплине «Теория вероятностей и математическая статистика» используется 100-балльная шкала.

Критерий	Оценка по 100-	Оценка по
	балльной шкале	традиционной шкале
Студент освоил изучаемый материал	75-100	Отлично
(основной и дополнительный),		
системно и грамотно излагает его,		
осуществляет полное и правильное		
выполнение заданий в соответствии с		
индикаторами достижения		
компетенций, способен ответить на		
дополнительные вопросы.		
Студент освоил изучаемый материал,	50-74	Хорошо
осуществляет выполнение заданий в		
соответствии с индикаторами		
достижения компетенций с		
непринципиальными ошибками.		
Студент демонстрирует освоение	25-49	<i>Удовлетворительно</i>
только основного материала, при		
выполнении заданий в соответствии с		
индикаторами достижения компетенций		
допускает отдельные ошибки, не		
способен систематизировать материал		


и делать выводы.		
Студент не освоил основное	<25	Неудовлетворительно
содержание изучаемого материала,		
задания в соответствии с		
индикаторами достижения компетенций		
не выполнены или выполнены неверно.		

3. Типовые контрольные задания или иные материалы, необходимые для оценки уровня достижения компетенций в соответствии с индикаторами

1.Выявить системные связи, применить естественнонаучные и общеинженерные знания, методы математического анализа и моделирования для решения задачи на операции со случайными событиями

Компетенция	Индикатор достижения компетенции		
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.3 Выявляет системные связи и отношения между изучаемыми явлениями, процессами и/или объектами на основе принятой парадигмы		
ОПК-1 Способен применять естественнонаучные и	ОПК-1.1 Применяет математический аппарат,		
общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	методы математического анализа и моделирования для решения задач		

1. На рисунке изображена схема:

Рассмотрим события: $A_i = \{$ работает элемент a_i , $i = 1, 2, 3 \}$, $B = \{$ схема работает $\}$. Применяя соответствующий математический аппарат (алгебру событий) выразить события B и \overline{B} через A_i .

- 2. Три эксперта независимо друг от друга рецензируют одну и ту же статью. Рассмотрим события $A_i = \{i \text{-} \text{й эксперт}, i = 1, 2, 3, дал положительный отзыв на статью}. Применяя соответствующий математический аппарат (алгебру событий) выразить через них следующие события: <math>B = \{\text{только один эксперт не дал положительный отзыв}\}$, $C = \{\text{хотя бы один эксперт не дал положительный отзыв}\}$, $D = \{\text{только второй эксперт дал положительный отзыв}\}$.
- 3. Из числового множества $\{1, 2, 3, 5, 6\}$ выбирается случайно одно число. Рассмотрим события: $A = \{$ выбранное число чётное $\}$, $B = \{$ число делится на $3\}$, $C = \{$ число больше трёх $\}$. Применяя соответствующий математический аппарат (алгебру событий) упростить выражение $A \cdot \overline{B} + A \cdot C + B \cdot C + B$ и выяснить смысл полученного события.
- 4. Два математика независимо друг от друга решают одну и ту же задачу. Рассмотрим события: $A = \{$ задачу решил 1-й математик $\}$, $B = \{$ задачу решил 2-й математик $\}$. Применяя соответствующий математический

аппарат (алгебру событий) выяснить смысл событий: $A \cdot B$, $\overline{A} - B$, $A \cdot \overline{B}$, $A + B + (\overline{A} - B)$.

2.Задача на классическое определение вероятности с использованием комбинаторики

Компетенция	Индикатор достижения компетенции		
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.3 Выявляет системные связи и отношения между изучаемыми явлениями, процессами и/или объектами на основе принятой парадигмы		
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	ОПК-1.1 Применяет математический аппарат, методы математического анализа и моделирования для решения задач		

- 1. а) В мастерскую для ремонта поступили 8 автомобилей. Известно, что 2 из них нуждаются в замене коробки передач. Наудачу берут четыре автомобиля. Используя соответствующий математический аппарат (свойства вероятности) найти вероятности событий: $A = \{$ среди выбранных автомобилей только один нуждается в замене коробки передач $\}$, $B = \{$ все выбранные автомобили не нуждаются в замене коробки передач $\}$, $C = \{$ хотя бы один автомобиль нуждается в замене коробки передач $\}$.
- б) Используя соответствующий математический аппарат (свойства вероятности и комбинаторику) найти вероятность того, что наугад взятое шестизначное число начинается на три одинаковые цифры.
- **2.** а) В коллективе работают **8** человек, из них **3** человека имеют возраст не менее 50 лет. Наугад выбирают **4** работника этого коллектива. Используя соответствующий математический аппарат (свойства вероятности) найти вероятности событий: $\mathbf{A} = \{$ все выбранные моложе 50-ти лет $\}$, $\mathbf{B} = \{$ среди выбранных хотя бы двое моложе 50 лет $\}$, $\mathbf{C} = \{$ не менее трёх человек среди выбранных моложе 50 лет $\}$.
- б) Из последовательности чисел 1, ..., 100 наугад выбираются три числа. Используя соответствующий математический аппарат (свойства вероятности и комбинаторику) найти вероятность того, что два из них меньше 50, а одно больше 50?
- **3.** а) В спортивной команде **9** человек, среди которых **4** имеют звание мастера спорта. Наугад из этой команды выбирают троих спортсменов. Используя соответствующий математический аппарат (свойства вероятности) найти вероятности событий: $\mathbf{A} = \{$ среди выбранных два мастера спорта $\}$, $\mathbf{B} = \{$ среди выбранных есть хотя бы один мастер спорта $\}$, $\mathbf{C} = \{$ среди выбранных спортсменов мастеров спорта меньше, чем не мастеров $\}$.
- б) Случайным образом поставили на шахматную доску белого и чёрного королей. Используя соответствующий математический аппарат (свойства вероятности и комбинаторику) найти вероятность того, что получилась допустимая правилами игры позиция?

3.Задача на геометрические вероятности

Компетенция	Индикатор достижения компетенции		
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных	УК-1.3 Выявляет системные связи и отношения между изучаемыми явлениями, процессами и/или объектами на основе принятой		
задач	парадигмы .		
ОПК-1 Способен применять естественнонаучные и	ОПК-1.1 Применяет математический аппарат,		
общеинженерные знания, методы математического	методы математического анализа и		
анализа и моделирования, теоретического и	моделирования для решения задач		
экспериментального исследования в			
профессиональной деятельности			

- **1.** Взята случайным образом точка из кругового сектора радиуса \mathbf{R} и с углом $\mathbf{60}$ градусов. Используя соответствующий математический аппарат (геометрические вероятности) найти вероятность того, что точка окажется от вершины угла на расстоянии, большем \mathbf{r} , где $\mathbf{r} < \mathbf{R}$.
- 2. Пусть взяты наугад действительные числа x и y, удовлетворяющие условиям: $0 \le x \le 2$, $0 \le y \le x$. Используя соответствующий математический аппарат (геометрические вероятности) найти вероятность того, что их сумма не превосходит единицу.
- **3.** Внутри равностороннего треугольника со сторонами длиной **a** взята произвольная точка. Используя соответствующий математический аппарат (геометрические вероятности) найти вероятность того, что эта точка удалена от каждой из вершин больше, чем на **0,5a**.
- **4.** Вычисляется определитель $D = \begin{vmatrix} 1 & a \\ a & b \end{vmatrix}$, где a и b произвольные действительные числа из отрезка [0, 2]. Используя соответствующий математический аппарат (геометрические вероятности) найти вероятность того, что этот определитель будет отрицательным.

4.Задача на применение формулы полной вероятности и формулы Байеса

Компетенция	Индикатор достижения компетенции		
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.3 Выявляет системные связи и отношения между изучаемыми явлениями, процессами и/или объектами на основе принятой парадигмы		
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	ОПК-1.1 Применяет математический аппарат, методы математического анализа и моделирования для решения задач		

- 1. Некая система тестирования устроена следующим образом: с вероятностью 0,8 правильный ответ признаётся правильным и с вероятностью 0,1 неправильный ответ признается правильным. Тестируемому предложили ответить на один случайно взятый вопрос из десяти, из которых только на три он не знает правильные ответы. В результате тестирования ответ на предложенный вопрос признан неправильным. Используя соответствующий математический аппарат (формулу полной вероятности и формулу Байеса) найти вероятность того, что на самом деле тестируемый дал правильный ответ?
- 2. В жилом доме эксплуатируются 10 пассажирских лифтов двух моделей: 8 лифтов модели M_1 и 2 лифта модели M_2 . Известно, что вероятность поломки лифта модели M_1 в течение года составляет 0,2, а для лифта модели M_2 такая вероятность равна 0,4. Случайным образом взяли два лифта в этом доме. Оказалось, что они отработали без поломок в течение года. Используя соответствующий математический аппарат (формулу полной вероятности и формулу Байеса) найти вероятность того, что это лифты модели M_1 .
- 3. На экспертизу поступили образцы некоторой продукции. Пусть с вероятностью 0,8 среди них есть бракованные, а с вероятностью 0,2 таковых нет. В 1-м случае экспертиза определяет наличие бракованных образцов с вероятностью 0,9, а во 2-м случае с вероятностью 0,05. Экспертиза обнаружила наличие брака. Используя соответствующий математический аппарат (формулу полной вероятности и формулу Байеса) найти вероятность того, что поступившие образцы не имели брак.

5.Задача на применение схемы испытаний Бернулли

Компетенция	Индикатор достижения компетенции		
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных	УК-1.3 Выявляет системные связи и отношения между изучаемыми явлениями, процессами и/или объектами на основе принятой		
задач	парадигмы .		
ОПК-1 Способен применять естественнонаучные и	ОПК-1.1 Применяет математический аппарат,		
общеинженерные знания, методы математического	методы математического анализа и		
анализа и моделирования, теоретического и	моделирования для решения задач		
экспериментального исследования в			
профессиональной деятельности			

- 1. Человек при работе на конвейере выполняет некие одинаковые операции. Вероятность того, что он не совершит ошибки в каждой такой операции, равна 0,95. Используя соответствующий математический аппарат (схему Бернулли) найти вероятность того, что он: а) совершит ровно одну ошибку в 4-х операциях; б) совершит хотя бы одну ошибку в 5-ти операциях.
- 2. Пусть на станцию скорой помощи в среднем за один час поступает 10 вызовов, один из которых оказывается ложным. Используя соответствующий математический аппарат (схему Бернулли) найти вероятность того, что в течение часа: а) поступит два ложных вызова; б) хотя бы один ложный вызов.
- 3. Факультет имеет пять кафедр. Ежедневно с вероятностью 0,2 на каждую кафедру, независимо от других, могут поступить сообщения из деканата. Используя соответствующий математический аппарат (схему Бернулли) найти вероятность того, что в течение дня: а) сообщения поступили только на две кафедры; б) не менее трёх кафедр получат сообщения.
- 4. Пусть 60% жителей города выбирают для поездки на работу автомобильный транспорт. Случайно выбрали пять жителей, которые пользуются транспортом для работу. Используя соответствующий поездки на математический аппарат (схему Бернулли) найти вероятность того, что: а) на работу едут автомобильным транспортом трое; б) крайней ПО мере двое автомобильным транспортом.

6.Задача на составление ряда распределения дискретной случайной величины и вычисления математического ожидания и дисперсии

Компетенция	Индикатор достижения компетенции		
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять	УК-1.3 Выявляет системные связи и отношения между изучаемыми явлениями, процессами		
системный подход для решения поставленных	и/или объектами на основе принятой		
задач ОПК-1 Способен применять естественнонаучные и	парадигмы ОПК-1.1 Применяет математический аппарат,		
общеинженерные знания, методы математического анализа и моделирования, теоретического и	методы математического анализа и моделирования для решения задач		
экспериментального исследования в профессиональной деятельности			

- 1. Пешеход, идя на работу, должен перейти три дороги, оборудованные светофорами. Каждый светофор независимо друг от друга работает в следующем режиме: в течение 20 секунд зеленый свет, в течение 5 секунд желтый, а красный свет горит 55 секунд. Используя соответствующий математический аппарат для дискретной случайной величины найти ряд распределения, математическое ожидание и дисперсию числа ожиданий пешеходом зелёного света при переходе дорог.
- 2. Пусть известно, что 75% всех преподавателей некоторого ВУЗа имеют возраст более 50-ти лет. Рассмотрим случайную величину X число преподавателей с возрастом не более 50-ти лет среди трёх наугад взятых преподавателей данного ВУЗа. Используя соответствующий математический аппарат для дискретной случайной величины найти для величины X ряд распределения, математическое ожидание и дисперсию.
- 3. У предприятия по производству пластиковых окон три поставщика. Вероятность несвоевременной поставки комплектующих материалов каждым поставщиком равна 0,1. Случайная величина X число поставщиков, которые своевременно поставили свою продукцию на предприятие. Используя соответствующий математический аппарат для дискретной случайной величины X найти ряд распределения, математическое ожидание и дисперсию.

7.Задача на непрерывные случайные величины (равномерно, показательно и нормально распределённые)

Компетенция	Индикатор достижения компетенции		
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.3 Выявляет системные связи и отношения между изучаемыми явлениями, процессами и/или объектами на основе принятой парадигмы		
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	ОПК-1.1 Применяет математический аппарат, методы математического анализа и моделирования для решения задач		

- 1. Пусть случайная величина X равномерно распределена на промежутке [a,b], при этом математическое ожидание M(X)=3, а дисперсия $D(X)=\frac{16}{3}$. Используя соответствующий математический аппарат для равномерно распределённой случайной величины найти: а) числа a и b; б) плотность распределения f(x) и функцию распределения F(x); в) вероятность события $X \in [0,5]$.
- 2. Предположим, что величина X имеет показательное распределение с параметром λ и математическим ожиданием M(X)=0,2. Используя соответствующий математический аппарат для показательно распределённой случайной величины найти: а) параметр λ ; б) дисперсию D(X); в) плотность распределения f(x) и функцию распределения F(x); г) вероятность того, что значение случайной величины X будет принадлежать отрезку [0; 0,2].
- 3. Случайная величина $X \in N(a, \sigma)$. Даны математическое ожидание M(X) = 1 и дисперсия D(X) = 1. Используя соответствующий математический аппарат для нормально распределённой случайной величины найти: а) параметры a и σ , б) вероятность $P(-3 \le X \le 0,5)$; в) значение x из условия $P(X \ge x) = 0,1$.

8.Осуществить обработку информации в соответствии с поставленной задачей по математической статистике (способы записи выборки, статистическое оценивание, проверка статистических гипотез)

Компетенция	Индикатор достижения компетенции	
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных	УК-1.1 Осуществляет сбор и обработку информации в соответствии с поставленной задачей	
задач	УК-1.3 Выявляет системные связи и отношения между изучаемыми явлениями, процессами и/или объектами на основе принятой парадигмы	

1. Дана выборка

Xi	8	10	5	8	9
y i	1	3	1	2	3

Используя соответствующий математический аппарат статистической обработки данных вычислить: 1) средние \bar{x} и \bar{y} ; 2) исправленные выборочные дисперсии s_x^2 и s_y^2 ; 3) выборочный коэффициент корреляции r_a ; 4) построить диаграмму рассеивания и прямые линии регрессии.

2. Дана выборка

Xi	9	10	12	7	5
y i	6	4	7	3	2

Используя соответствующий математический аппарат статистической обработки данных вычислить: 1) средние \bar{x} и \bar{y} ; 2) исправленные выборочные дисперсии s_x^2 и s_y^2 ; 3) выборочный коэффициент корреляции r_{ϵ} ; 4) построить диаграмму рассеивания и прямые линии регрессии.

3. Дана выборка

Xi	10	2	7	5	8
y _i	5	2	3	2	4

Используя соответствующий математический аппарат статистической обработки данных вычислить: 1) средние \bar{x} и \bar{y} ; 2) исправленные выборочные дисперсии s_x^2 и s_y^2 ; 3) выборочный коэффициент корреляции r_a ; 4) построить диаграмму рассеивания и прямые линии регрессии.

4. Файл и/или БТЗ с полным комплектом оценочных материалов прилагается.