Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФИТ Авдеев A.C.

Рабочая программа дисциплины

Код и наименование дисциплины: Б1.О.20 «Электроника и схемотехника»

Код и наименование направления подготовки (специальности): 10.03.01 Информационная безопасность

Направленность (профиль, специализация): Организация и технологии защиты информации (в сфере техники и технологий, связанных с обеспечением защищенности объектов информатизации)

Статус дисциплины: обязательная часть

Форма обучения: очная

Статус	Должность	И.О. Фамилия
Разработал	заведующий кафедрой	А.Г. Якунин
	Зав. кафедрой «ИВТиИБ»	А.Г. Якунин
Согласовал	руководитель направленности	Е.В. Шарлаев
	(профиля) программы	

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора		
0ПК-4	Способен применять необходимые физические законы и модели для решения задач профессиональной деятельности	0ПК-4.1	Применяет физические законы и модели при решении задач		
		0ПК-4.2	Анализирует электрические схемы при решении задач профессиональной деятельности		

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики), предшествующие изучению дисциплины, результаты освоения которых необходимы для освоения данной дисциплины.	анализ, Теория вероятностей и математическая
Дисциплины (практики), для которых результаты освоения данной дисциплины будут необходимы, как входные знания, умения и владения для их изучения.	каналам, Преддипломная практика,

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 4 / 144 Форма промежуточной аттестации: Экзамен

	Виды занятий, их трудоемкость (час.)		Объем контактной		
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
очная	32	32	0	80	71

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 4

Лекционные занятия (32ч.)

1. Введение (лекция с разбором конкретных ситуаций) (1ч.)[4,7] Общее представление о предметной области. Основная задача дисциплины - научить применять физические законы и модели при решении задач в области электроники и схемотехники, уметь выполнять анализ электрических схем при решении задач профессиональной деятельности.

Структура дисциплины и её связь с другими дисциплинами. Требования к уровню усвоения материала, к промежуточной и текущей аттестации.

Общее представление об электронике. Понятие сигнала. Компонентная база электроники. Номенклатура современной компонентной базы. Пассивные компоненты электронных цепей. Основные параметры конденсаторов и резисторов. Ряды номинальных значений

Роль знаний схемотехники при изучении технической документации по средствам технической защиты и анализе их схем

- 2. Модуль 1. Многополюсники. Электрические фильтры {беседа} (1ч.)[4,6,7] классификация определения четырехполюсников И двухполюсников. Многополюсные цепи. Четырехполюсники и функциональные блоки. Частотные характеристики реактивных двухполюсников. Понятие АЧХ ФЧХ. Логарифмический полулогарифмический И Передаточная функция. Активные пассивные электрические дифференциальным Передаточная функция ee СВЯЗЬ C уравнением, импульсной и частотными характеристиками. Использование преобразования цепей. Коэффициент передачи ДЛЯ анализа передаточная ТИПЫ фильтров и их характеристика. функция. Основные Активные пассивные фильтры. Фильтры Бесселя, Баттерворта и Чебышева. Пассивные Общее представление о активные фильтры. методах оптимизации параметров фильтра. Краткое содержание лабораторной работы №1
- 3. Модуль 2. Основы физики полупроводников (беседа) (4ч.)[4,9] Тема 2.1. Физические законы и явления, лежащие в основе работы электронных полупроводниковых приборов.

Полупроводники: понятие о зонной теории, зонная энергетическая диаграмма, основные термины и определения, виды проводимости, основные законы, описывающие происходящие в полупроводниках физические явления. Кинетические явления в полупроводниках. Термоэлектрические и гальваномагнитные явления. Электропроводность в сильных электрических полях.

- Тема 2.2. Полупроводниковые приборы на основе кинетических явлений элементы Пельте, тензорезисторы И фоторезисторы. Термопары, основные Датчики Холла. Терморезисторы: свойства ИХ 2. Краткое содержание лабораторной работы характеристики. технической Рекомендации советы ПО анализу документации программно-аппаратному комплексу, поиску справочных данных (datasheet) по конкретным компонентам электронной аппаратуры.
- Тема 2.3. Электронно-дырочный переход и его свойства Виды электрических переходов. Потенциальная диаграмма электронно-

дырочного перехода и его ВАХ. Физические явления в p-п переходах. Барьер Шоттки. Емкость и толщина p-п перехода. Виды пробоев p-п перехода и его частотные свойства. Модели p-n перехода.

Тема 2.4. Полупроводниковые приборы с одним p-n – переходом

Система обозначений полупроводниковых приборов. Эквивалентная схема (схема замещения), параметры характеристики полупроводниковых И приборов. Выпрямительные, универсальные и импульсные диоды. Диоды СВЧ: умножительные, настроечные, генераторные (смесительные, переключательные) Шоттки. Туннельные диоды. Лавинопролетные диоды диоды. Фотодиоды И светодиоды. Варисторы варикапы. **Условные** обозначения, графические система характеристик И параметров перечисленных приборов. Конструкция и основные технологии изготовления р-п переходов.

- 4. Модуль 3. Полупроводниковые приборы широкого применения {беседа} (4ч.)[4,9,10] Тема 3.1. Полупроводниковый стабилитрон и его применение Стабилитроны. ВАХ. Параметры стабилитрона. Параметрический стабилизатор. Принцип работы, основные характеристики и методы расчета. Краткое содержание лабораторной работы № 3.
- Тема 3.2. Биполярные транзисторы (БТ)

Принцип работы БТ. БТ p-n-p и n-p-n типа. Технологии изготовления БТ. Сплавные и диффузионные БТ. Инверсное включение. Режимы: отсечки, инверсный, рабочий, насыщения. Конструкция и основные технологии изготовления. Характеристика схем включения с ОБ, ОЭ и ОК и их ВАХ. Эффект Эрли. Температурные зависимости и частотные свойства БТ. Работа в импульсном режиме. Модели и схемы замещения, система h-параметров. Другие основные параметры БТ. Виды БТ: однопереходные, лавинные, и многоэмиттерные транзисторы. Система маркировки, обозначений и УГО БТ. Краткое содержание лабораторной работы № 4.

Тема 3.3.. Полупроводниковые приборы с несколькими p-n переходами Принцип работы, УГО, основные характеристики и параметры тиристоров и их разновидностей: динисторов, тринисторов и симисторов.

Тема 3.4. Полевые транзисторы

Полевые транзисторы с p-n переходом и каналом n и p - типа: принцип работы, семейство BAX, основные параметры. Полевые транзисторы с изолированным затвором и встроенным и индуцированным каналом. КМОП-структуры и технологии их изготовления. Устройства на основе ПТ: истоковый повторитель, коммутатор аналоговых сигналов, УВХ, источник тока с термостабильной точкой. Разновидности ПТ. Современные технологии на основе напряженного кремния, с УФ и иммерсионным слоем. Краткое содержание лабораторной работы № 5.

Тема 4.4. Элементы силовой электроники

Области допустимых значений ВАХ. Пробои в БТ и их параллельное включение. Мощные FET — транзисторы. Силовые IGBT — транзисторы.

5. Модуль 4. Усилители электрических сигналов {беседа} (3ч.)[4,6,7] Тема 4.1. Схемотехника и параметры усилителей

Определение. Классификация, основные характеристики параметры усилителей. Параметры усилителей статические и динамические. Режимы усиления класса A, B, C и D и их сравнительная характеристика. каскады переменного и постоянного тока: переходные характеристики. Усилители на биполярных транзисторах. Принцип работы усилителя на БТ. Графический и аналитический методы расчета. Статический и динамический режим работы. Обратные связи в классификация усилителях: назначение, И методы расчета. Способы 00C Термостабилизация. реализации В усилителях. усилителей на полевых транзисторах. **Дифференциальны**й схемотехники работы. **Усилительные** каскады динамической C нагрузкой пушпульные каскады. Транзисторы Дарлингтона и составные транзисторы. Усилители мощности и напряжения (предварительные усилители). Усилители Двухтактные усилители мощности: фазоинверсный постоянного тока. каскад, каскады на комплиментарных парах. Многокаскадные усилители. Виды межкаскадной связи. Трансформаторные усилители. Мостовые схемы. Краткое содержание лабораторной работы № 6.

Тема 4.2. Операционные усилители

Усилители постоянного тока. Операционные усилители (ОУ): свойства, назначение, основные характеристики (АЧХ, амплитудная и др.) частотные, усилительные, и параметры (входные, выходные, динамический диапазон, эксплуатационные). стабильности, предельные, **Устойчивость** vсилителей коррекция характеристик. И ИΧ схемотехнические решения на ОУ.

6. Модуль 5. Прочие электронные приборы {беседа} (3ч.)[4] Тема 5.1. Электровакуумные и газоразрядные приборы

Электровакуумные и газоразрядные приборы. Тиратроны и неоновые лампы. ВАХ газового разряда. Физические явления, используемые в электровакуумных приборов. Вакуумные диоды, триоды, тетроды и пентоды. Основы электронной оптики. Кинескопы. ЭЛТ с электростатическим и магнитным отклонением. Электронные приборы СВЧ: магнетроны, клистроны, лампы бегущей и обратной волны. Волноводы и их виды. Принцип работы радиолокаторов и СВЧ — печей. УВЧ — терапия.

Тема 5.2. Элементы оптоэлектроники

Классификация оптоэлектронных приборов и физические явления, ежащие в основе их работы. Фотоприемники интегрального типа. Светоизлучатели. Оптроны. Полупроводниковые преобразователи изображения и координатночувствительные фотоприемники. Кинескопы. ПЗС – фотоприемники и фотодиодные матрицы. Нанотрубки. ЖКИ. Электролюминесцентные индикаторы. Краткое содержание лабораторной работы № 7.

Тема 5.3. Микросхемотехника

Классификация ИС. ИС малой, Микросхемы. средней и высокой степени интеграции. БИС СБИС. 0сновные И технологические операции. Разновидности интегральных схем технологий изготовления. ИΧ Усилители в интегральном исполнении. Аналоговые и цифровые ИС. Базовые

элементы цифровых ИС и их сравнительные характеристики. Система условных обозначений ИС

7. Модуль 6. Цифровая схемотехника {беседа} (6ч.)[5,6,8] Тема 6.1. Общее представление о современной схемотехнике

Схема как набор функциональных блоков. Аналоговая, линейно-импульсная и цифровая схемотехника. Классификация функциональных блоков. Серии микросхем и их номенклатура. Основные виды цифровых и аналоговых интегральных микросхем. Микропроцессоры, микроконтроллеры и системы на кристалле. Другие компоненты вычислительной техники: индикаторные устройства, устройства ввода, элементы памяти.

Тема 6.2. Комбинационная логика

Логические элементы. Таблицы истинности. Нормальные конъюнктивные и дизъюнктивные формы. Понятие о картах Карно. Основы схемотехники логических элементов. Базовые элементы логических схем, их основные параметры и характеристики. Простейшие логические элементы И, ИЛИ, И-НЕ, ИЛИ-НЕ. Шинные формирователи и преобразователи уровней. Типовые комбинационные устройства: шифраторы и дешифраторы, преобразователи кодов, мультиплексоры и демультиплексоры. Сумматоры и полусумматоры. Схемы сравнения. Цифровые умножители и АЛУ. Моделирование работы логических схем в симуляторах. Понятие о гонках.

Тема 6.3. Последовательностная логика

Принципы построения и диаграммы работы основных элементов последовательностной логики. Триггеры: RS,D, T, JK. Регистры: параллельные, последовательные, реверсивные, сдвигающие.

Счетчики: суммирующие, вычитающие, реверсивные, с предустановкой и с произвольным коэффициентом пересчета. Отличие схем с последовательным и параллельным переносом

8. Модуль 7. Схемотехника аналоговых и импульсных устройств {беседа} (6ч.)[6,7,8] Тема 7.1. Схемотехника устройств обработки аналоговых сигналов.

Применение операционных усилителей для обработки аналоговых сигналов. Амплитудные и частотные дискриминаторы. Модуляторы и демодуляторы. Детекторы: амплитудные, частотные и синхронные. Устройства выборки и хранения. Аналоговые ключи и аттенюаторы. Управляемые аттенюаторы. Активные фильтры.

Тема 7.2. Общее представление о линейно-импульсной схемотехнике Электронный ключ. Дифференцирующие и интегрирующие цепи. Устройства и принцип действия компараторов, генераторов сигналов (релаксационных, мультивибраторов) блокинг-генераторов, синусоидальной, изменяющейся и прямоугольной формы. Формирователи импульсов (триггеров мультивибраторы). одновибраторы ждущие Шмидта, или Использование усилителей элементов и операционных для генерации функциональных преобразований сигналов.

Тема 7.3. Источники вторичного электропитания

Выпрямители: однополупериодные, двухполупериодные, с умножением

напряжения. Стабилизаторы напряжения: параметрические, компенсационные параллельного и последовательного типа, импульсные. Преобразователи и инверторы напряжения.

9. Модуль 8. Схемотехника компонентов средств вычислительной техники (СВТ) {лекция с разбором конкретных ситуаций} (4ч.)[4,5,6,8] Тема 8.1. Общие представления о структуре СВТ.

Типовые архитектуры CBT. Системы команд RISC (reduced instruction set computer) и CISC (complex instruction set computing). Структура памяти CBT и виды ее адресации (регистровая, непосредственная и косвенная) Понятие о прерываниях, стеках, регистрах команд и внешних устройств, портах ввода/вывода и интерфейсах. Интерфейс с раздельными магистралями. Интерфейс «Общая шина». Управляющие сигналы и принципы организации обмена информацией в вычислительных системах.

Тема 8.2. Схемотехника элементов памяти СВТ

Статическая и динамическая оперативная память: схемотехника и циклограммы обмена и регенерации. Внешняя память и её интерфейсы.

Тема 8.3. Схемотехника аналогово-цифровых и цифро-аналоговых преобразований сигналов

преобразователи Аналогово-цифровые (АЦП). 0сновные параметры АЦП. Параллельные АЦП. АЦП последовательного приближения. Сигма-дельта АЦП. Интегрирующие АЦП. Цифро-аналоговые преобразователи (ЦАП). параметры ЦАП. Виды ЦАП: Последовательные ЦАП: a) ЦАП с широтноимпульсной модуляцией: 6) Последовательный ЦАП на конденсаторах; Параллельные ЦАП: а) ЦАП с суммированием весов; Сигмадельта модуляторы

Лабораторные работы (32ч.)

- 1. Исследование передаточных функций пассивных RC-фильтров {с элементами электронного обучения и дистанционных образовательных технологий} (6ч.)[1,2,3,4,6,10] Экспериментальное снятие AЧХ и ФЧХ пассивных фильтров и сравнение результатов с результатами их расчета и моделирования.
- 2. Исследование термистора и стабилитрона {творческое задание} (4ч.)[1,2,3,4,9,11,12] Исследование полупроводниковые приборов на основе кинетических явлений в полупроводниках и на основе явлений в p-n переходе
- 3. Исследование транзисторов {творческое задание} (4ч.)[1,2,3,4,11,12] Снятие семейств ВАХ биполярных и униполярных транзисторов на характериографе. Расчет основных параметров транзисторов по семейству ВАХ
- 4. Исследование параметров и характеристик оптронов {творческое задание} (4ч.)[1,2,3,4,12] Исследование работы фототранзисторного оптрона и снятие таких его характеристик и параметров, определяющих его быстродействие, функцию передачи входного тока и нелинейность преобразования
- 5. Исследование работы усилителя на биполярном транзисторе {творческое

- задание (6ч.)[1,2,3,4,6] Исследование режимов работы усилительного каскада на биполярном транзисторе, включенном по схеме с 0Э. Режимы работы усилительных каскадов (A,AB,B,C,D). Усиление по постоянному и переменному току. Оценка влияния величины обратной связи на свойства усилителя. Термостабилизация усилительных каскадов. Общие принципы настройки и наладки усилительных каскадов
- 6. Измерение параметров базовых элементов логических схем {творческое задание} (4ч.)[1,2,3,5,11] В лабораторной работе предлагается по вариантам исследовать динамические и статические характеристики и параметры базовых элементов комбинационных логических схем, и составить комбинационную схему на их основе для реализации заданной логической функции
- 7. Исследование источников вторичного электропитания {творческое задание} (4ч.)[1,2,3,6] В работе исследуется влияние параметров входящих в схему электронных компонентов на работу различных видов схем выпрямителей и стабилизаторов компенсационного или импульсного типа

Самостоятельная работа (80ч.)

- 1. Изучение теоретического материала {с элементами электронного обучения и дистанционных образовательных технологий} (10ч.)[4,5,6,7,8,9] Целью самостоятельной работы студентов (CPC) является углубление закрепление знаний по изучаемым теоретическим разделам дисциплины, необходимых для ПОДГОТОВКИ K выполнению лабораторных работ защите, оформлению отчетов ПО выполненным лабораторным работам. учебного Самостоятельное некоторой освоение части методического материала осуществляется в течение всего семестра при выполнении лабораторных работ
- 2. Подготовка отчетов по выполненным работам, подготовка к их защите {с элементами электронного обучения и дистанционных образовательных технологий (34ч.)[1,2,3,4,5,6] При подготовке отчета важно соблюдать все представленные В начале презентации ПО выполнению правила, лабораторных работ (форматирование числовых данных, графиков, нумерация страниц и т.д.), а также следить, чтобы в отчет были внесены все компоненты, перечисленные на слайде по конкретной работе.

Для подготовке к защите работы ориентироваться на приведенные в презентации вопросы и на базу тестовых вопросов

- 3. Подготовка к экзамену {тренинг} (36ч.)[4,5,6,7,9] При подготовке к экзамену руководствоваться типовыми заданиями, при веденными в данной рабочей программе
- 5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронной информационно-образовательной среде АлтГТУ:

- Α.Γ. Лабораторный Якунин практикум схемотехнике для студентов ИΤ учебное-методическое -направлений: пособие/ А.Г.Якунин. - Алт. гос. техн. ун-т им. И.И. Ползунова. -Барнаул, 2021. - 256 с., ил. — Текст : электронный.// Доступ из ЭБС pdf-файл 9.56 МБ. http://elib.altstu.ru/eum/download/ivtib/uploads/yakunin-a-g-ivtiib-60a4bdc50fdd5.pdf. - (дата обращения: 20.05.2021) Режим доступа: для авториз. пользователей
- 2. Якунин А.Г. Электроника и схемотехника. Задания, содержание отчетов, тестовые вопросы по лабораторным работам: Слайды к курсу лекций / А.Г.Якунин. Алт. гос. техн. ун-т им. И.И. Ползунова. Барнаул, 2021. 23 с., ил. Текст : электронный.// Доступ из ЭБС АлтГТУ.- pdf-файл 1.5 MБ. URL: http://elib.altstu.ru/eum/download/ivtib/uploads/yakunin-a-g-ivtiib-60a4be1dd36db.pdf (дата обращения: 20.05.2021) Режим доступа: для авториз. пользователей
- 3. Якунин А.Г. Комплект тестовых вопросов по электронике и схемотехнике: учебное-методическое пособие / А.Г.Якунин. Алт. гос. техн. ун-т им. И.И. Ползунова. Барнаул, 2021. 141 с. ил. Текст: электронный.// Доступ из ЭБС АлтГТУ.- pdf-файл 5.09 МБ. URL: http://elib.altstu.ru/eum/download/ivtib/uploads/yakunin-a-g-ivtiib-606c1efdd82d4.pdf. (дата обращения: 20.05.2021) Режим доступа: для авториз. пользователей

6. Перечень учебной литературы

6.1. Основная литература

- 4. Максина, Е. Л. Электроника: учебное пособие / Е. Л. Максина. 2-е изд. Саратов: Научная книга, 2019. 159 с. ISBN 978-5-9758-1823-2. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/81069.html (дата обращения: 22.10.2020). Режим доступа: для авторизир. пользователей
- 5. Постников, А. И. Схемотехника ЭВМ : учебное пособие / А. И. Постников, В. И. Иванов, О. В. Непомнящий. Красноярск : Сибирский федеральный университет, 2018. 284 с. ISBN 978-5-7638-3701-8. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/84144.html. Режим доступа: для авторизир. пользователей
- 6. Красько, А. С. Схемотехника аналоговых электронных устройств: учебное пособие / А. С. Красько. Томск : Томский государственный университет систем управления и радиоэлектроники, В-Спектр, 2006. —

180 с. — ISBN 5-902958-05-9. — Текст : электронный // Электроннобиблиотечная система IPR BOOKS : [сайт]. — URL: https://www.iprbookshop.ru/13978.html (дата обращения: 19.05.2021). — Режим доступа: для авторизир.пользователей

6.2. Дополнительная литература

- 7. Ульрих Титце Полупроводниковая схемотехника. Т.І / Ульрих Титце, Кристоф Шенк. Саратов : Профобразование, 2019. 826 с. ISBN 978-5-4488-0052-8. Текст : электронный // IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/88003.html (дата обращения: 12.03.2023). Режим доступа: для авторизир. пользователей
- 8. Ульрих Титце Полупроводниковая схемотехника. Т.II / Ульрих Титце, Кристоф Шенк. Саратов : Профобразование, 2019. 940 с. ISBN 978-5-4488-0059-7. Текст : электронный // IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/88004.html (дата обращения: 12.03.2023). Режим доступа: для авторизир. пользователей
- 9. Якунин А.Г. Полупроводниковая электроника: Учебное пособие для студентов электрических специальностей / А.Г.Якунин. Алт. гос. техн. ун-т им. И.И. Ползунова. Барнаул, 2021. 62 с. ил. Текст : электронный.// Доступ из ЭБС АлтГТУ.- pdf-файл 1.43 МБ. URL: http://elib.altstu.ru/eum/download/ivtib/uploads/yakunin-a-g-ivtiib-60a4bd232c349.pdf (дата обращения: 13.03.2023) Режим доступа: для авториз. пользователей
- 7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
- 10. Официальный сайт фирмы National Instruments.[Электронный ресурс]. URL: https://www.ni.com/ru-ru.html (дата обращения: 20.05.2021). Режим доступа: свободный. Яз.рус
- 11. Фирма Терраэлектроника [Электронный ресурс] / Официальный сайт и каталог электронных компонентов с документацией. URL: http://www.terraelectronica.ru/ (дата обращения: 20.05.2021). Режим доступа: свободный. Загл.с экрана. Яз.рус.
- 12. База описаний электронных компонентов Electronic Components Datasheet Search [Электронный ресурс]. URL: https://www.alldatasheet.com/ (дата обращения: 20.05.2021). Режим доступа: свободный. Яз.англ.
- 8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение
1	Chrome
1	LibreOffice
2	Windows
2	Foxit Reader
3	Mathcad 15
3	Антивирус Kaspersky
4	Multisim 10.1
5	7-Zip

№пп	Используемые профессиональные базы данных и информационные	
	справочные системы	
1	IEEE Xplore - Интернет библиотека с доступом к реферативным и полнотекстовым статьям и материалам конференций. Бессрочно без подписки (https://ieeexplore.ieee.org/Xplore/home.jsp)	
2	Национальная электронная библиотека (НЭБ)— свободный доступ читателей к фондам российских библиотек. Содержит коллекции оцифрованных документов (как открытого доступа, так и ограниченных авторским правом), а также каталог изданий, хранящихся в библиотеках России. (http://нэб.рф/)	
3	Springer - Издательство с доступом к реферативным и полнотекстовым материалам журналов и книг (https://www.springer.com/gp https://link.springer.com/)	
4	Wiley - Издательство с доступом к реферативным и полнотекстовым материалам журналов и книг. Содержит большой раздел Computer Science & Information Technology, содержащий pdf-файлы с полными текстами журналов и книг издательства. Фиксируется пользователь информации на уровне вуза (Access byPolzunov Altai State Technical University) (https://www.wiley.com/en-ru https://www.onlinelibrary.wiley.com/)	

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения учебных занятий
помещения для самостоятельной работы

образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».