Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФИТ Авдеев A.C.

Рабочая программа дисциплины

Код и наименование дисциплины: Б1.О.16 «Электроника и основы микропроцессорной техники»

Код и наименование направления подготовки (специальности): 12.03.01 Приборостроение

Направленность (профиль, специализация): Искусственный интеллект в приборостроении

Статус дисциплины: обязательная часть

Форма обучения: очная

Статус	Должность	И.О. Фамилия
Разработал	доцент	В.С. Афонин
	Зав. кафедрой «ИТ»	А.Г. Зрюмова
Согласовал	руководитель направленности (профиля) программы	А.Г. Зрюмова

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора
	Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и	0ПК-1.1	Применяет естественнонаучные знания, методы математического анализа и моделирования для решения задач
ОПК-1	моделирования в инженерной деятельности, связанной с проектированием, и конструированием, технологиями производства приборов и комплексов широкого назначения	ОПК-1.2	Применяет общеинженерные знания в деятельности, связанной с созданием приборов и комплексов широкого назначения
ОПК-5	Способен участвовать в разработке текстовой, проектной и конструкторской документации в соответствии с нормативными требованиями	ОПК-5.2	Применяет нормативные требования при разработке текстовой документации

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики),	Общая электротехника, Физика
предшествующие изучению	
дисциплины, результаты	
освоения которых необходимы	
для освоения данной	
дисциплины.	
Дисциплины (практики), для	Интерфейсы передачи данных, Основы
которых результаты освоения	проектирования приборов и систем, Робототехнические комплексы
данной дисциплины будут	1 000101EXHUPECKUE KOMIDIEKCU
необходимы, как входные	
знания, умения и владения	
для их изучения.	

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 5 / 180 Форма промежуточной аттестации: Экзамен

	Виды занятий, их трудоемкость (час.)				Объем контактной
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
очная	16	32	0	132	62

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 4

Лекционные занятия (16ч.)

- 1. Полупроводниковые приборы {лекция с разбором конкретных ситуаций} (2ч.)[3,6] Металлы, диэлектрики и полупроводники. Генерация и рекомбинация электронов и дырок. Примесные полупроводники. РN-переход. Биполярный транзистор как элемент электрической цепи. Статические характеристики транзистора и характеристические параметры. Нормативные документы и справочные материалы полупроводниковых приборов.
- 2. Усилители {лекция с разбором конкретных ситуаций} (2ч.)[3,5,6] Усилители на биполярных транзисторах и их классификация. Обратная связь и ее виды. Усилители с обратной связью. АЧХ усилительного каскада и накладываемые ею ограничения применения. Операционный усилитель как базовый элемент аналоговых микроэлектронных устройств. Инвертирующий и неинвертирующий усилитель.
- 3. Источники вторичного электропитания (лекция с разбором конкретных ситуаций) (2ч.)[3,6] Источники вторичного питания электронной аппаратуры. Схемы выпрямителей и основные соотношения при работе выпрямителя на активную нагрузку. Сравнение схем выпрямителей. Математический аппарат для расчета выпрямителя. Сглаживающие фильтры: индуктивные и емкостные, индуктивно-емкостные фильтры. Пример расчетов сглаживающих фильтров. Стабилизаторы напряжения и тока. Принцип стабилизации и основные определения. Параметрические стабилизаторы. Стабилизаторы на основе ОУ. Импульсные стабилизаторы.
- Функциональные устройства комбинационного типа {с элементами электронного обучения и дистанционных образовательных технологий} (2ч.)[3,5,6,7] Логические функции, аксиомы алгебры логики, функций, построение карт Карно. Инвертор, логических дизъюнктор, конъюнктор, условное обозначение, таблица истинности. Мультиплексоры и демультиплексоры. Универсальные логические модули мультиплексоров. Шифраторы и дешифраторы. Сумматоры и полусумматоры.
- 5. Цифровые запоминающие устройства (лекция с разбором конкретных ситуаций) (2ч.)[3,6] Триггерные схемы. Бистабильная ячейка. Таблицы истинности триггерных схем. Ограничение возможностей триггеров при их эксплуатации. Асинхронные и синхронные триггеры. Однотактные и двухтактные триггеры. Регистры. Классификация регистров. Параллельные и последовательные регистры.
- 6. Устройства сопряжения аналоговых и цифровых схем {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,6] Цифроаналоговые преобразователи с матрицами R-2n и R-2R. Функциональные схемы, принцип работы, основные характеристики. Аналого-цифровые преобразователи (АЦП). Математический аппарат преобразований (ЦАП и АЦП). АЦП последовательного счета,

следящие АЦП: функциональные схемы и принцип работы.

- 7. Микропроцессоры {лекция с разбором конкретных ситуаций} (2ч.)[6] Микропроцессоры и микропроцессорные комплекты. Определение микропроцессора (МП). Отличительные особенности МП, изготовленных по различным технологиям. Структура микропроцессорной системы (МПС) на основе МП с жестким управлением. Структура МП с микропрограммным управлением. Микропроцессор К580ВМ80. Структура МП. Шина управления МП. Функционирование и временные диаграммы МП. Слово состояния.
- 8. Интерфейсы микропроцессорных систем {лекция с разбором конкретных ситуаций} (2ч.)[6] Шинные формирователи. Многорежимный буферный регистр. Параллельный периферийный адаптер K580BB55. Структура, режимы, выбор канала. Управляющее слово. Программирование ППА. Интерфейсы МПС. Интерфейс I вида (с раздельной адресацией). Интерфейс II вида (с общим адресным пространством).

Нормативная документация интерфейсных устройств.

Лабораторные работы (32ч.)

- 9. Контрольно-измерительные приборы в про-грамме EWB/Multisim. {работа в малых группах} (4ч.)[2] Применяя общеинженерные знания и методы математического анализа научиться пользоваться виртуальными измерительными приборами программы EWB/ Multisim для дальнейшего их использования в последующих лабораторных работах. Научиться применять нормативные требования при формировании отчета.
- 10. Исследование полупроводниковых приборов {работа в малых группах} (4ч.)[2] Применяя общеинженерные знания и методы математического анализа исследовать параметры полупроводниковых диодов и транзисторов. Научиться применять нормативные требования при формировании отчета.
- Выпрямители и стабилизаторы {работа в малых группах} (4ч.)[2] Применяя общеинженерные знания методы математического И изучить процессы, происходящие выпрямителей схемах полупроводниковых стабилизаторов. Научиться применять нормативные требования при формировании отчета.
- 12. Усилители {работа в малых группах} (4ч.)[2] Изучить работу операционного усилителя в инвертирующем, неинвертирующем включении и в режиме интегратора, научиться определять режимы работы элементов в сложных схемах усилителей. Научиться применять нормативные требования при формировании отчета.
- 13. Исследование комбинационных логических
- схем {работа в малых группах} (4ч.)[2] Научиться строить электрические схемы по логическим выражениям. Научиться применять нормативные требования при формировании отчета.
- 14. Триггеры {работа в малых группах} (4ч.)[2] Изучить структуру триггеров различных типов и алгоритмы их работы. Научиться применять нормативные требования при формировании отчета.

- 15. Счетчики и сдвиговые регистры {работа в малых группах} (4ч.)[2] Изучить алгоритмы работы последовательных логических схем, научиться строить счетчики с заданным коэффициентом пересчета. Научиться применять нормативные требования при формировании отчета.
- 16. Мультиплексоры, дешифраторы, сумматоры. {работа в малых группах} (4ч.)[2] Изучить алгоритмы работы схем. Научиться применять нормативные требования при формировании отчета.

Самостоятельная работа (132ч.)

- 17. Подготовка к лекциям (с элементами электронного обучения и дистанционных образовательных технологий) (30ч.)[3,4,5,6]
- 18. Подготовка к аттестации {с элементами электронного обучения и дистанционных образовательных технологий} (18ч.)[3,4,5,6]
- 19. Подготовка к лабораторным работам (с элементами электронного обучения и дистанционных образовательных технологий) (38ч.)[2]
- 20. Расчетное задание {разработка проекта} (18ч.)[1] Разработка программного обеспечения микроконтроллеров
- 21. Экзамен {с элементами электронного обучения и дистанционных образовательных технологий} (28ч.)[3,4,5,6,7]
- 5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронной информационно-образовательной среде АлтГТУ:

- 1. Соловьев В.А., Афонин В.С. Микроконтроллеры Учебное пособие для выполнения расч□тного задания по курсу «Электроника и основы микропроцессорной техники» [Электронный ресурс]: Учебно-методическое пособие.— Электрон. дан.— Барнаул: АлтГТУ, 2020.— Режим доступа:http://elib.altstu.ru/eum/download/it/uploads/afonin-v-s-it-5fda03b2e5914.pdf
- 2. Афонин В.С. Методические указания предназначены для бакалавров заочной обучения ПО направлению 12.03.01 очной форм «Приборостроение» (ФГОСЗ++) ПО дисциплине «Электроника И основы микропроцессорной техники» [Электронный pecypcl: Методические дан. – Барнаул: АлтГТУ, 2020. – Режим доступа: указания. – Электрон. http://elib.altstu.ru/eum/download/it/uploads/afonin-v-s-it-5fda02f3a1fe0.pdf

6. Перечень учебной литературы

6.1. Основная литература

3. Суханова, Н. В. Основы электроники и цифровой схемотехники : учебное пособие / Н. В. Суханова ; под редакцией В. С. Кудряшов. — Воронеж : Воронежский государственный университет инженерных технологий, 2017. — 96 с. — ISBN 978-5-00032-226-0. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/70815.html . — Режим доступа: для авторизир. пользователей

6.2. Дополнительная литература

- 4. Троян, П. Е. Микроэлектроника: учебное пособие / П. Е. Троян. Томск: Томский государственный университет систем управления и радиоэлектроники, 2007. 346 с. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/13947.html. Режим доступа: для авторизир. пользователей
- 5. Водовозов, А. М. Основы электроники : учебное пособие / А. М. Водовозов. 2-е изд. Москва, Вологда : Инфра-Инженерия, 2019. 140 с. ISBN 978-5-9729-0346-7. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/86566.html . Режим доступа: для авторизир. пользователей
- 6. Гусев В.Г. Электроника и микропроцессорная техника: учеб. пособие для вузов / В.Г. Гусев, М.Ю. Гусев. 5-е изд., стер. М.: Высш. шк., 2008. 798 с. -25 экз.
- 7. Мещеряков, Ю. Г. Электроника : учеб. пособие / Ю. Г. Мещеряков ; Алт. гос. техн. ун-т им. И. И. Ползунова. Барнаул : [Изд-во АлтГТУ], 2006. 133 с. -33 экз.
- 7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
 - 8. Электронный курс http://it.fitib.altstu.ru/neud/op/start.htm
- 9. Таблицы команд микропроцессора K580 BM80 и микроконтроллера K1816BE48 http://it.fitib.altstu.ru/neud/op/start.htm
- 10. Справочники по резисторам, конденсаторам и интегральным схе http://it.fitib.altstu.ru/neud/op/start.htm
- 11. Эмуляторы микропроцессора и микроконтроллера http://it.fitib.altstu.ru/neud/op/start.htm
- 12. Обучающий тест по микропроцессорам http://it.fitib.altstu.ru/neud/op/start.htm
- 13. МИКРОПРОЦЕССОРНАЯ ТЕХНИКА: КОНСПЕКТ ЛЕКЦИЙ Автор/создатель: Денисов К.M. http://ets.ifmo.ru/denisov/lec/oglavlen.htm

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение
1	Acrobat Reader
1	LibreOffice
2	Windows
2	Atmel Studio
3	Антивирус Kaspersky
4	Microsoft Office
5	Multisim 10.1

№пп	Используемые профессиональные базы данных и информационные		
	справочные системы		
1	Национальная электронная библиотека (НЭБ)— свободный доступ читателей к фондам российских библиотек. Содержит коллекции оцифрованных документов (как открытого доступа, так и ограниченных авторским правом), а также каталог изданий, хранящихся в библиотеках России. (http://нэб.рф/)		

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специа	льных помещений і	и помещений для самостоятельной работы
учебные аудитории для г	проведения учебных	занятий
помещения для самостоя	гельной работы	

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».