Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФЭАТ Баранов A.C.

Рабочая программа дисциплины

Код и наименование дисциплины: Б1.В.5 «Автотракторные ДВС»

Код и наименование направления подготовки (специальности): 13.03.03

Энергетическое машиностроение

Направленность (профиль, специализация): Двигатели внутреннего сгорания

Статус дисциплины: часть, формируемая участниками образовательных

отношений

Форма обучения: очная

Статус	Должность	И.О. Фамилия
Разработал	доцент	Г.В. Пыжанкин
	Зав. кафедрой «ДВС»	А.Е. Свистула
Согласовал	руководитель направленности	А.Е. Свистула
	(профиля) программы	

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора	
	Способен принимать и	ПК-2.1	Анализирует влияние условий работы объекта профессиональной деятельности на принимаемые конструктивные решения	
обосновывать конкретные технические решения при создании объектов	ПК-2.2	Проводит комплекс расчетов для объекта профессиональной деятельности		
	энергетического машиностроения	ПК-2.3	P. T.	

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики), предшествующие изучению дисциплины, результаты освоения которых необходимы для освоения данной дисциплины.	Детали машин и основы конструирования, Метрология, стандартизация и сертификация, Механика материалов и конструкций, Теоретическая механика, Термодинамика
Дисциплины (практики), для которых результаты освоения данной дисциплины будут необходимы, как входные знания, умения и владения для их изучения.	грарочих процессов поршневых двигателей. Г

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 4 / 144 Форма промежуточной аттестации: Зачет

	Виды занятий, их трудоемкость (час.)			Объем контактной	
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
очная	32	0	32	80	76

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 5

Лекционные занятия (32ч.)

- 1. Краткая история развития ПДВС, основные понятия и определения. {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,7,8] Предмет "Автотракторные ДВС".
- .1. Краткая история развития поршневых ДВС.
- 2. Основные понятия и определения в ПДВС, маркирование их по ГОСТу, рабочие циклы, такты, степень сжатия и др.
- 3. Анализ влияния условий эксплуатации двигателей на экономичность работы.
- 2. Способы изменения мощности ДВС. {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,7] .1. Эффективная мощность, удельные показатели ЛВС.
- 2. Классификация двигателей.
- 3. Коэффициент избытка воздуха для двигателей с различными способами измерения мощности.
- 4. Пределы изменения коэффициента избытка воздуха для двигателей с количественным и качественным способами измерения мощности.
- 5. Анализ влияния коэффициента избытка воздуха на мощностные и экономические показатели двигателя.
- 3. Кривошипно шатунный механизм (КШМ). {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,7] 1. Остовы ПДВС и их разновидности.
- 2. Верхние и нижние картеры двигателей с различными способами изменения мошности.
- 3. Цилиндры ПДВС двигателей с воздушной системой охлаждения.
- 4. Блок-цилиндров ПДВС двигателей с жидкостной системой охлаждения.
- 5. Анализ влияния количестве цилиндров двигателя и схемы расположения кривошипов коленчатого вала на мощность и экономичность.
- 5. Блок-картеры ПДВС двигателей с жидкостной системой охлаждения.
- 4. Кривошипно шатунный механизм (КШМ). {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,7] К1. Головки цилиндров и головки блока цилиндров двигателей с

воздушной и жидкостной системами охлаждения.

- 2. Способы крепления головок к остову двигателя.
- 3. Поршни.
- 4. Поршневые пальцы.
- 5. Поршневые кольца..
- 6. Влияние режима работы двигателя на теплонапряженное состояние поршней.
- 5. Кривошипно шатунный механизм (КШМ).

- . {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,7] 1. Коленчатые валы, варианты конструкций.
- 2. Гасители крутильных колебаний, уравновешивание сил инерции и центробежных сил.
- 3. Вкладыши коренные и шатунные.
- 4. Шатуны.
- 5. Способы сочленения шатунов с поршнем и коленчатым валом.
- 6.. Маховики.
- 7. Расчетные исследования по подбору маховой массы маховика.
- 6. Механизм газораспределения (МГР). {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,7] 1. Классификация и типы МГР.
- 2. Принципиальные схемы МГР.
- 3. Нижнеклапанные и верхнеклапанные МГР.
- 4. МГР 4-х тактных ПДВС.
- 5. МГР 2-х тактных ПДВС.
- 6. Клапанные, золотниковые и комбинированные МГР.
- 7. Обоснование технических решений по использованию схемы МГР для различных типов двигателей.
- 7. Механизм газораспределения (МГР). {лекция с разбором конкретных ситуаций} (2ч.)[4,5,7] 1. Кулачковые валы МГР.
- 2. Привод клапанов при нижней и верхней схемах МГР.
- 3. Детали привода, крепления и фиксации клапанов МГР.
- 4. Различные способы привода клапанов.
- 5. Тепловой зазор клапанов.
- 6. Основы расчетов клапанов МГР современных двигателей.
- 8. Система жидкостного охлаждения. {лекция с разбором конкретных ситуаций} (2ч.)[4,5,7] 1. Принципиальные схемы систем жидкостного охлаждения.
- 2. Жидкостный насос системы охлаждения.
- 3. Теплообменники и радиаторы систем охлаждения.
- 4. Термостаты, вентиляторы и рубашки охлаждения.
- 5. Охлаждающие жидкости, параметры системы охлаждения.
- 6. Основы расчетов параметров системы охлаждения двигателей воздушного и жидкостного охлаждения.
- 9. Система воздушного охлаждения. {лекция с разбором конкретных ситуаций} (2ч.)[4,5,7] 1. Принципиальные схемы систем воздушного охлаждения.
- 2. Назначение, тип, привод вентилятора в воздушной системе охлаждения двигателей.
- 3. Направляющий кожух и дефлектирование в системе воздушного охлаждения.
- 4. Оребрение цилиндров и головок двигателя в системе воздушного охлаждения.
- 5. Термостат в системе воздушного охлаждения.
- 6. Обоснование подбора типа термостата для двигателей воздушного и

жидкостного охлаждения

- 10. Система смазки. {лекция с разбором конкретных ситуаций} (2ч.)[4,5,7]
- 1.Системы смазки их классификация и путь масла от маслозаборника до трущихся поверхностей ДВС.
- 2. Масляные насосы.
- 3. Масляные фильтры.
- 4. Центробежный масляный фильтр (центрифуга), □ способы включения его в систему смазки.
- 5. Масляные радиаторы системы смазки.
- 6. Системы вентиляции картера.
- 7. Основные этапы расчета системы смазки.
- 11. Системы топливоподачи ДВС с количественным способом изменения мощности (карбюраторные ПДВС). {лекция с разбором конкретных ситуаций} (2ч.)[4,5,7] 1. Способ топливоподачи и распыливания топлива в ПДВС с помощью карбюратора.
- 2. Диафрагменный топливоподкачивающий насос с механическим приводом.
- 3. Принципиальная схема систем топливоподачи и воздухоснабжения карбюраторных двигателей.
- 4. Путь топлива от бака до карбюратора.
- 5. Топливный бак и фильтры двигателей, работающих на легких сортах топлива.
- 6. Топливоподкачивающие насосы с механическим приводом.
- 7. Назначение, принцип действия, классификация и размещение основных систем карбюраторов.
- 8. Принятие технического решения по выбору системы подачи топлива современных дизелей.
- 12. Системы топливоподачи ДВС с количественным способом изменения мощности (инжекторные ПДВС). {лекция с разбором конкретных ситуаций} (2ч.)[4,5,7] 1. Инжекторный способ топливоподачи в ПДВС.
- 2. Принципиальная схема систем топливоподачи и воздухоснабжения инжекторных двигателей.
- 3. Путь топлива к инжектору для смешения с воздухом.
- 4. Топливный бак и фильтры инжекторных двигателей.
- 5. Топливный насос с электрическим приводом.
- 6. Назначение, принцип действия и расположение основных агрегатов инжекторных систем.
- 7. Влияние особенностей системы топливоподачи с количественным способом изменения мощности на экономические показатели двигателя.
- 13. Системы топливоподачи двигателей с качественным способом изменения мощности (дизели). {лекция с разбором конкретных ситуаций} (2ч.)[4,5,7] .1. Способы топливоподачи и распыливания топлива в цилиндрах дизелей.
- 2. Способы смесеобразования в дизелях.

- 3. Топливный насос высокого давления дизеля (ТНВД).
- 4. Форсунки дизелей.
- 5. Регуляторы частоты вращения коленчатого вала.
- 6. Принципиальные схемы систем топливоподачи ДВС с качественным способом изменения мощности.
- 7. Поршневой топливоподкачивающий насос с механическим приводом от эксцентрика кулачкового вала.
- 8. Основные этапы расчета регуляторов частоты вращения.
- 14. Перспективная аккумуляторная топливная система дизелей Common Rail. {лекция с разбором конкретных ситуаций} (2ч.)[4,5,7] 1. Топливные системы дизелей аккумуляторного типа, их преимущества и недостатки.
- 2. Схема и агрегаты системы топливоподачи аккумуляторного типа Common Rail.
- 3. Функциональное назначение каждого агрегата.
- 4. Устройство топливного насоса высокого давления дизеля системы Common Rail (ТНВДК).
- 5. Устройство электрогидравлической форсунки дизеля оборудованного системой Common Rail.
- 6.Устройство и принцип действия пьезокварцевой форсунки дизеля с системой Common Rail.
- 7. основные этапы расчета системы топливоподачи Common Rail.
- 15. Наддув поршневых ДВС. {лекция с разбором конкретных ситуаций} (2ч.)[4,5,7] 1. Способы наддува ПДВС.
- 2. Газодинамический наддув.
- 3. Наддув от приводного нагнетателя.
- 4. Газотурбинный наддув.
- 5. Двухступенчатый наддув.
- 6. Преимущества и недостатки газотурбинного наддува.
- 7. Критерии выбора системы наддува для современных дизелей.
- 16. Системы запуска ПДВС {лекция с разбором конкретных ситуаций} (2ч.)[4,5,7] Виды запуска ПДВС

Ручной запуск поршневых двигателей

Электростартерный запуск ПДВС

Электродвигатели и обгонные муфты стартеров

Практические занятия (32ч.)

1. Основные понятия, определения и маркировка ДВС. {имитация} (4ч.)[3,4,5,7] Основные понятия и определения, маркирование и основные удельные показатели ДВС. Двухтактный и четырехтактный циклы. Кривошипно шатунный механизм.

Основные этапы расчета кинематики кривошипно-шатунных механизмов.

2. Механизм газораспределения. {имитация} (4ч.)[4,5,7] Механизм газораспределения, системы охлаждения (жидкостная, воздушная) и смазки

ДВС. Этапы расчета МГР.

3. Системы топливоподачи и воздухоснабжения двигателей. {имитация} (4ч.)[4,5,7] Системы топливоподачи и воздухоснабжения двигателей с количественным и качественным способами изменения мощности работающих на жидком и газообразном топливах.

Основы проектирование систем подачи топлива.

4. Перспективная аккумуляторная топливная система дизелей - Common Rail. {имитация} (4ч.)[4,5,7] Схема и агрегаты системы топливоподачи аккумуляторного типа. Функциональное назначение каждого

агрегата. Устройство топливного насоса высокого давления (ТНВДК) и др.

Анализ условий использования системы Common Rail на современных дизелях.

- 5. Наддув ДВС. {имитация} (4ч.)[4,5,7] Системы наддува ПДВС. Особенности компоновки системы наддува Гипербар
- 6. Системы жидкостного и воздушного охлаждения ПДВС. {имитация} (4ч.)[5,7] Принципиальные схемы систем жидкостного и воздушного охлаждения ПДВС. Теплообменники и радиаторы

систем охлаждения. Термостаты, вентиляторы, рубашки охлаждения и охлаждающие жидкости. Параметры

систем охлаждения, преимущества и недостатки жидкостной и воздушной систем.

Критерии выбора параметров систем охлаждения дизелей в зависимости от условий эксплуатации.

7. Система смазки. {имитация} (4ч.)[5,7] Системы смазки - их классификация и путь масла от маслозаборника до трущихся поверхностей ПДВС.

Масляные насосы, фильтры и радиаторы систем смазки ПДВС.

Особенности проектирования систем смазки судовых дизелей.

8. Системы запуска ПДВС. {имитация} (4ч.)[5,7] Виды запуска ПДВС. Ручной, электростартерный и пневматический запуски ПДВС. Запуск двигателя

вспомогательным поршневым ДВС. Способы облегчающие запуск ПДВС,

Анализ влияния температуры и давления окружающего воздуха на выбор системы запуска.

Самостоятельная работа (80ч.)

- **1.** СРС(34ч.)[1,2,3,5,6,8] Подготовка к практическим занятиям.
- 2. СРС(10ч.)[3,5,7] . Подготовка к контрольным опросам.
- 3. СРС(36ч.)[1,2,3,4,5,6,7,8,9] Подготовка к зачету и экзамену.
- 5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронной информационно-образовательной среде АлтГТУ:

- 1. Токарев, А. Н. Техническая эксплуатация автомобилей на маршруте: учебное пособие. В 2-х частях. Часть 2 / А. Н. Токарев. Алт. гос. техн. ун-т им. И. И. Ползунова. Барнаул: Изд-во АлтГТУ, 2004. 178 с.-35 экз.
- 2. Проверочный расчет мощностного баланса трактора : методические указания / А. А. Балашов, Г. В. Пыжанкин, А. Е. Свистула, Д. В. Сиротенко. Алт. гос. тех. ун-т им. И. И. Ползунова. Барнаул : Издво АлтГТУ, 2015. 19 с. Режим доступа: http://elib.altstu.ru/eum/download/dvs/Balashov balans tr.pdf.
- 3. Пыжанкин, Г. В. Конструкция ДВС: учебное пособие / Г. В. Пыжанкин, Е. А. Гер-ман; Алт.гос.техн.ун-т им. И. И. Ползунова. Барнаул : Изд-во АлтГТУ, 2021. 91 с. Режим Доступа: http://elib.altstu.ru/eum/download/dvs/Pyzhankin KonstrDVS up.pdf

6. Перечень учебной литературы

6.1. Основная литература

- 4. Свистула, А. Е. Двигатели внутреннего сгорания : учебное пособие / А. Е. Свистула, В. А. Синицын ; Алт. гос. техн. ун-т им. И. И. Ползунова. Изд. 4-е, перераб. и доп. Электрон. текстовые дан. (рdf-файл : 2.60 МБ). Барнаул : Изд-во АлтГТУ, 2018. 93 с. : ил. ; 81 с. : ил. Режим доступа: http://elib.altstu.ru/eum/download/dvs/Sinicin-DVS-up.pdf
- 5. Карташевич, А. Н. Теория автомобилей и двигателей : учебное пособие : [12+] / А. Н. Карташевич, Г. М. Кухаренок, А. А. Рудашко. Минск : РИПО, 2018. 308 с. : ил., схем., табл. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=497471 (дата обращения: 16.03.2023). Библиогр. в кн. ISBN 978-985-503-828-4. Текст : электронный.
- 6. Пантилеенко, В. И. Основы технологии производства и ремонта автомобилей / В. И. Пантилеенко. Алт.гос.техн.ун-т им. И.И. Ползунова. Барнаул : Изд-во АлтГТУ, 2017. 200 с.

доступа:http://elib.altstu.ru/eum/download/aiax/Pantileenko_OsnTehProizRemAut up.pdf

6.2. Дополнительная литература

- 7. Райков, И. Я. Конструкция автомобильных и тракторных двигателей / И. Я. Райков, Г. Н. Рытвинский. Москва : Высшая школа, 1986. 352 с.- 56 экз.
 - 8. Техническая эксплуатация автомобилей : учебник для вузов / Е.

- С. Кузнецов, А. П. Болдин, В. М. Власов и др; 4-е изд., перераб. и доп. Москва : Наука, 1991. 416 с.- 167 экз.
- 7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
- 9. http://rdiesel.ru/DVIGATELESTROYENIYE/DVS.html журнал "Двигателестроение"
- 8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение	
1	LibreOffice	
2	Mathcad 15	
2	Windows	
3	Антивирус Kaspersky	

№пп	Используемые профессиональные базы данных и информационные		
	справочные системы		
1	Национальная электронная библиотека (НЭБ)— свободный доступ читателей к фондам российских библиотек. Содержит коллекции оцифрованных документов (как открытого доступа, так и ограниченных авторским правом), а также каталог изданий, хранящихся в библиотеках России. (http://нэб.рф/)		
2	Российский Речной Регистр раздел документы		
	(https://www.rivreg.ru/docs/)		

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения учебных занятий
помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».