ПРИЛОЖЕНИЕ А ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Механика жидкости и газа»

1. Перечень оценочных средств для компетенций, формируемых в результате освоения дисциплины

Код контролируемой компетенции	Способ оценивания	Оценочное средство
ОПК-3: Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	Экзамен	Комплект контролирующих материалов для экзамена
ОПК-4: Способен применять в расчетах теоретические основы рабочих процессов в энергетических машинах и установках	Экзамен	Комплект контролирующих материалов для экзамена

2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

Оцениваемые компетенции представлены в разделе «Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций» рабочей программы дисциплины «Механика жидкости и газа».

При оценивании сформированности компетенций по дисциплине «Механика жидкости и газа» используется 100-балльная шкала.

Критерий	Оценка по 100-	Оценка по
	балльной шкале	традиционной шкале
Студент освоил изучаемый материал	75-100	Отлично
(основной и дополнительный),		
системно и грамотно излагает его,		
осуществляет полное и правильное		
выполнение заданий в соответствии с		
индикаторами достижения		
компетенций, способен ответить на		
дополнительные вопросы.		
Студент освоил изучаемый материал,	50-74	Хорошо
осуществляет выполнение заданий в		
соответствии с индикаторами		
достижения компетенций с		
непринципиальными ошибками.		
Студент демонстрирует освоение	25-49	<i>Удовлетворительно</i>
только основного материала, при		
выполнении заданий в соответствии с		
индикаторами достижения компетенций		
допускает отдельные ошибки, не		
способен систематизировать материал		
и делать выводы.		

Студент не освоил основное	<25	Неудовлетворительно
содержание изучаемого материала,		
задания в соответствии с		
индикаторами достижения компетенций		
не выполнены или выполнены неверно.		

3. Типовые контрольные задания или иные материалы, необходимые для оценки уровня достижения компетенций в соответствии с индикаторами

1.Задание на применение математического аппарата при вычислении избыточного давления

Компетенция	Индикатор достижения компетенции
ОПК-3 Способен применять соответствующий физико-математический аппарат, методы анализа	ОПК-3.1 Применяет математический аппарат, методы математического анализа и
и моделирования, теоретического и экспериментального исследования при решении	моделирования для решения задач
профессиональных задач	

Применяя соответствующий математический аппарат, вычислите величину силы избыточного давления воды на вертикальный щит шириной b = 2,5 м, если глубина воды перед щитом H = 3 м.

2.Задание на применение математического аппарата при вычислении потерь напора по длине

Компетенция	Индикатор достижения компетенции
•	ОПК-3.1 Применяет математический аппарат,
физико-математический аппарат, методы анализа	методы математического анализа и
и моделирования, теоретического и	моделирования для решения задач
экспериментального исследования при решении	
профессиональных задач	

Применяя соответствующий математический аппарат, вычислите потери напора на трение при движении воды в трубе длиной l = 500 м, диаметром d = 500 мм. Расход воды Q = 600 л/с, коэффициент гидравлического трения $\lambda = 0.032$.

3.Задание на применение уравнения постоянства расхода

Компетенция	Индикатор достижения компетенции
ОПК-3 Способен применять соответствующий	ОПК-3.2 Применяет естественнонаучные и/или
физико-математический аппарат, методы анализа	общеинженерные знания для решения задач
и моделирования, теоретического и	
экспериментального исследования при решении	
профессиональных задач	

Применяя знание уравнения постоянства расхода, решите следующую задачу: определите скорость течения в трубе диаметром d=100 мм, если проходящий расход жидкости составляет Q=0.03 м $^3/c$.

4.Задание на применение основного закона гидростатики

Компетенция				Индикатор достижения компетенции
0ПК-3	Способен	применять	соответствующий	ОПК-3.2 Применяет естественнонаучные и/или
физико-	математиче	ский аппарат,	методы анализа	общеинженерные знания для решения задач

ı	и моделирования,	теоретич	еско	го и
3	экспериментального и	исследования	при	решении
l	профессиональных зада	ач		

Применяя знание основного закона гидростатики, решите следующую задачу: определите абсолютное и избыточное давление воды на дно открытого сосуда, если атмосферное давление $p_a=100~\kappa\Pi a$, а глубина воды в сосуде равна: h=2.5~m; плотность воды $\rho_{H,O}=1000~\kappa e/m^3$.

5.Задание на исследование изменения плотности

Компетенция	Индикатор достижения компетенции	
ОПК-3 Способен применять соответствующий	ОПК-3.3 Участвует в теоретических и	
физико-математический аппарат, методы анализа	экспериментальных исследованиях,	
и моделирования, теоретического и	применяемых для решения профессиональных	
экспериментального исследования при решении	задач	
профессиональных задач		

На основе изменения физических свойств жидкостей и газов проведите исследование по изменению плотности воды (ρ_2/ρ_1) при сжатии её от p_1 = $1\cdot 10^5~\Pi a$ до p_2 = $1\cdot 10^7~\Pi a$. Принять коэффициент объемного сжатия $\beta_v = 5\cdot 10^{-10}~\Pi a^{-1}$.

6.Задание на исследование режима течения

Компетенция	Индикатор достижения компетенции		
ОПК-3 Способен применять соответствующий	ОПК-3.3 Участвует в теоретических и		
физико-математический аппарат, методы анализа	экспериментальных исследованиях,		
и моделирования, теоретического и	применяемых для решения профессиональных		
экспериментального исследования при решении	задач		
профессиональных задач			

На основе закономерностей течения жидкостей и газов проведите исследование режима течения жидкости для трубопровода диаметром d=300 мм, если расход воды Q=136 л/с. Температура воды 10 °C, для воды $v=1,306\cdot 10^{-6}$ м²/с при t=10 °C.

7.Задание на применение теоретических основ течения газов в расчётах

Компетенция		Индикатор достижения компетенции
ОПК-4 Способен применять	в расчетах	ОПК-4.2 Применяет в расчетах теоретические
теоретические основы рабочих	процессов в	основы рабочих процессов в энергетических
энергетических машинах и установ	ках	машинах и установках

Применяя теоретические основы истечения газов из резервуаров энергетических машин и установок, рассчитайте скорость истечения воздуха из резервуара с постоянным давлением $p_o=10$ МПа и температурой $t_o=15$ °C при вытекании его через трубку в атмосферу с давлением $p_{\scriptscriptstyle H}=0.1$ МПа. Процесс расширения считать адиабатным (k=1,41; $\mu_{\scriptscriptstyle G}=29\frac{\kappa_2}{\kappa_{\scriptscriptstyle MOD}b},~\beta_{\scriptscriptstyle Kp}=0.528$).

8.Задание на применение теоретических основ течения жидкостей в расчётах

Компетенция	Индикатор достижения компетенции
·	ОПК-4.2 Применяет в расчетах теоретические
теоретические основы рабочих процессов в	основы рабочих процессов в энергетических
энергетических машинах и установках	машинах и установках

Применяя теоретические основы течения жидкостей в трубопроводах энергетических машин и установок, рассчитайте максимальную скорость воды в трубопроводе диаметром d=20~mm, при которой будет сохраняться ламинарный режим течения Кинематический коэффициент вязкости воды $\nu=1,01\cdot10^{-6}~m^2/c$.

9.Задание на демонстрацию теоретических основ газодинамики

Компетенция	Индикатор достижения компетенции
ОПК-4 Способен применять в расчетах	ОПК-4.1 Демонстрирует знания теоретических
теоретические основы рабочих процессов в	основ рабочих процессов в энергетических
энергетических машинах и установках	машинах и установках

Демонстрируя знание теоретических основ газодинамики в трубопроводах энергетических машин и установок, запишите уравнение Бернулли для сжимаемой жидкости (газа) для изотермического процесса.

10.Задание на демонстрацию теоретических основ гидродинамики

Компетенция		Индикатор достижения компетенции
ОПК-4 Способен применять	в расчетах	ОПК-4.1 Демонстрирует знания теоретических
теоретические основы рабочих	процессов в	основ рабочих процессов в энергетических
энергетических машинах и установ	ках	машинах и установках

Демонстрируя знание теоретических основ гидродинамики в трубопроводах энергетических машин и установок, запишите уравнение движения вязкой жидкости (уравнения Навье-Стокса).

4. Файл и/или БТЗ с полным комплектом оценочных материалов прилагается.