ПРИЛОЖЕНИЕ А ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Математика»

1. Перечень оценочных средств для компетенций, формируемых в результате освоения дисциплины

Код контролируемой компетенции	Способ оценивания	Оценочное средство
ОПК-1: Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности	Экзамен	Комплект контролирующих материалов для экзамена

2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

Оцениваемые компетенции представлены в разделе «Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций» рабочей программы дисциплины «Математика».

При оценивании сформированности компетенций по дисциплине «Математика» используется 100-балльная шкала.

Критерий	Оценка по 100- балльной шкале	Оценка по
Студент освоил изучаемый материал (основной и дополнительный), системно и грамотно излагает его, осуществляет полное и правильное выполнение заданий в соответствии с индикаторами достижения компетенций, способен ответить на дополнительные вопросы.	балльной шкале 75-100	Традиционной шкале <i>Отлично</i>
Студент освоил изучаемый материал, осуществляет выполнение заданий в соответствии с индикаторами достижения компетенций с непринципиальными ошибками.	50-74	Хорошо
Студент демонстрирует освоение только основного материала, при выполнении заданий в соответствии с индикаторами достижения компетенций допускает отдельные ошибки, не способен систематизировать материал и делать выводы.	25-49	Удовлетворительно
Студент не освоил основное содержание изучаемого материала, задания в соответствии с индикаторами достижения компетенций не выполнены или выполнены неверно.	<25	Неудовлетворительно

3. Типовые контрольные задания или иные материалы, необходимые для оценки уровня достижения компетенций в соответствии с индикаторами

1.(1 семестр) Решить систему методом Гаусса.

Компетенция	Индикатор достижения компетенции
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности	ОПК-1.1 Решает задачи, связанные с применением математического аппарата

1. Решить с помощью формул Крамера систему уравнений, выполнить проверку.

$$\begin{cases} 2x + y + 3z = 7 \\ 2x + 3y + z = 1 \\ 3x + 2y + z = 6 \end{cases}$$

2. Решить методом Гаусса систему уравнений, выполнить проверку.

$$\begin{cases} 3x + 2y - 4z = 8 \\ 2x + 4y - 5z = 11, \\ x - 2y + z = 1 \end{cases}$$

2.(1 семестр) Определить, компланарны ли заданные векторы?

Компетенция	Индикатор достижения компетенции
ОПК-1 Способен применять естественнонаучные и	ОПК-1.1 Решает задачи, связанные с
общеинженерные знания, методы математического	применением математического аппарата
анализа и моделирования в профессиональной	
деятельности	

- 1. Проверить, коллинеарны ли векторы \vec{c} и \vec{c}_2 , если $\vec{a}\{1,0,1\}, \vec{e}\{-2,3,5\}, \vec{c}_1 = \vec{a} + 2\vec{e}, \vec{c}_2 = 3\vec{a} \vec{e}$..
- 2. Даны векторы $\bar{a}, \bar{e}, \bar{c}, \bar{d}$ и число α . Найти:
- а) при каких значениях х $\overline{a}\|\overline{e};\overline{a}\perp\overline{e}$ и векторы $\overline{a},\overline{c},\overline{d}$ компланарны;
- б) длину и направляющие косинусы вектора \overline{d} ;
- в) вектор $\overline{q} = \{x, y, z\}$, который перпендикулярен векторам \overline{e} и \overline{c} и $\overline{q} \cdot \overline{d} = \alpha$. Если $\overline{a}\{-1, x, 5\}$, $\overline{e}\{2, 7, -10\}$, $\overline{c}\{0, 1, 1\}$, $\overline{d}\{2, 1, -1\}$, $\alpha = 3$
- 3. Даны координаты вершин пирамиды $A_1A_2A_3A_4$. Найти:
- a) $\cos \angle (\overrightarrow{A_1}\overrightarrow{A_2}, \overrightarrow{A_1}\overrightarrow{A_3})$;
- б) площадь грани $A_1A_2A_3$;
- $\mathbf{B)} \ np_{A_1A_4} \overrightarrow{A_1A_3}$
- Γ) $\overrightarrow{A_1}\overrightarrow{A_4}\cdot\overrightarrow{A_2}\overrightarrow{A_3}$;
- д) объем пирамиды. Если $A_1(-4,2,6)$, $A_2(2,-3,0)$, $A_3(-10,5,8)$, $A_4(-5,2,-4)$.

3.(1 семестр) Написать каноническое уравнение гиперболы, если даны расстояние между фокусами и уравнения асимптот. Построить гиперболу.

Компетенция	Индикатор достижения компетенции
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной	ОПК-1.1 Решает задачи, связанные с применением математического аппарата
деятельности	

- 1. Найти угловой коэффициент прямой, проходящей через точки А(-1, 2), В(3, 4).
- 2. Написать уравнение плоскости, проходящей через точки $M_1(-1, -2, 1)$, M_2 (2, 0, -1) параллельно прямой $\underbrace{x+1}_4 = \underbrace{y+2}_3 = \underbrace{z-3}_3$.
- 3. Найти уравнения прямой, проходящей через точку P(1, 2, -2) перпендикулярно плоскости 3x + y 2z 4 = 0.
- 4. Найти площадь треугольника с вершинами A (1, 2, 0), B(3, 0, -3), C (5, 2, 6).
- 5. Найти уравнение множества точек M(x, y), сумма расстояний каждой из которых от A(2, 0) и B(-2, 0) равна $2\sqrt{5}$. Построить кривую.

4.(1 семестр)Вычислить заданный предел.

Компетенция	Индикатор достижения компетенции
ОПК-1 Способен применять естественнонаучные и	ОПК-1.1 Решает задачи, связанные с
общеинженерные знания, методы математического	применением математического аппарата
анализа и моделирования в профессиональной	
деятельности	

1.
$$\lim_{n\to\infty} \frac{(3-n)^2+(3+n)^2}{(3-n)^2-(3+n)^2}$$

2.
$$\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2} \right)$$

3.
$$\lim_{n\to\infty} \left(\frac{n+1}{n-1}\right)^n$$
.

4.
$$\lim_{x \to \infty} \frac{\sqrt{x}}{\sqrt{x + \sqrt{x + \sqrt{x}}}}.$$

5.
$$\lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$
.

6.
$$\lim_{\substack{x\to\infty\\x\to\infty}} x(\sqrt{x^2+1}-x)$$

7.
$$\lim_{x \to -1} \frac{x^3 + 1}{x^2 - 1}$$
.

8.
$$\lim_{x\to\infty} \left(\frac{x^2+5}{x^2-7}\right)^{\frac{x^2}{6}+1}$$
.

9.
$$\lim_{x\to e}\frac{\ln x-1}{x-e}$$
.

$$10. \lim_{x\to 0} \frac{3x^2 - 5x}{\sin 3x}.$$

11.
$$\lim_{x\to 2} \frac{\sin(x^2-4)\operatorname{arctg}(x-2)}{\left(e^{(x-2)^2}-1\right)\ln(x+1)}$$
.

12.
$$\lim_{x\to 0} \frac{\sin \pi x}{\sin 3\pi x}$$

5.(1 семестр) Найти производную заданной функции.

Компетенция	Индикатор достижения компетенции
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной	
деятельности	

1. Найти производные указанных функций:

1.
$$y = 2x^{5} - \frac{4}{x^{3}} + \frac{1}{x} + 3\sqrt[4]{x^{3}}$$
, 2. $y = e^{x} \cdot \arcsin 2x$, 3. $y = \frac{\sin x}{1 + \cos 2x}$, 4. $y = \ln tg \, 7x$, 5. $y = \sqrt[3]{3x^{4} + 2x - 5} - \frac{4}{(x - 2)^{5}}$.

- 2. Исследовать на экстремум, построить схематический график функции $y = 2x^3 9x^2 + 12x 9$.
- 3. Найти наименьшее и наибольшее значения функции $y = (x+1) \cdot \sqrt[3]{x^2}$ на отрезке $\left[-\frac{4}{5} \right]$, $\left[-\frac{4}{5} \right]$.

6.(1 семестр) Найти заданный неопределенный интеграл.

Компетенция	Индикатор достижения компетенции
ОПК-1 Способен применять естественнонаучные и	ОПК-1.1 Решает задачи, связанные с
общеинженерные знания, методы математического	применением математического аппарата
анализа и моделирования в профессиональной	
деятельности	

1)
$$\int \frac{x^3}{\sqrt[4]{x}} dx$$
 2) $\int \left(\frac{1}{8}\right)^{3x+2} dx$ 3) $\int \frac{\sqrt[5]{arctg^3 x} dx}{1+x^2}$
4) $\int \frac{5-2x}{\sqrt{2x-5}} dx$ 5) $\int \sin^2 5x dx$ 6) $\int (x-2)e^x dx$
7) $\int \sin 6x \cos 3x dx$ $\int \cos^3 x \sin^2 x dx$

7.(2 семестр) Найти общее решение ДУ 1-го порядка.

Компетенция	Индикатор достижения компетенции
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной	ОПК-1.1 Решает задачи, связанные с применением математического аппарата
деятельности	

1.
$$y' + 2yx = -2x$$
;

2.
$$\sqrt{3+y^2} + \sqrt{1-x^2}yy' = 0$$
;

3.
$$e^{y} dx + (\cos y + xe^{y}) dy = 0$$
;

4.
$$2y' = \frac{y^2}{x^2} + 6\frac{y}{x} + 3$$
.

5.
$$y''x \ln x = y'$$
, $y(1)=1$, $y'(1)=0$;

8.(3 семестр) Найти частное решение ДУ 2-го порядка.

Компетенция	Индикатор достижения компетенции
ОПК-1 Способен применять естественнонаучные и	
общеинженерные знания, методы математического	применением математического аппарата
анализа и моделирования в профессиональной	
деятельности	

- I. Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами.
 - 1) y''-12y'+35y=0;
- 3) y''-4y'+13y=0;
- 2) y''-10y'+25y=0;
- 4) y'''+y''=0.
- II. Применяя метод вариации произвольных постоянных, решить ЛНДУ:
- 1) y''+y=ctgx;
- 2) $y'' + y' = e^{-x}$.
- III. Решить ЛНДУ, применяя метод неопределенных коэффициентов.
- 1) $y''+4y'=x^3+7+2e^{-x}$; 2) $y''+2y'=e^{2x}(x+1)$.

9.(2 семестр) Найти вероятность случайного события

Компетенция	Индикатор достижения компетенции
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности	ОПК-1.1 Решает задачи, связанные с применением математического аппарата

- 1.В урне имеется 6 красных, 4 голубых и 3 зеленых шаров. Найти вероятность того, что из на удачу извлеченных трех шаров 2-красных.
- 2.Вероятность того, что лампа, останется исправной после 1000 часов работы равна 0,2. Найти вероятность того, что после 1000 часов работы хотя бы одна лампа из трех останется исправной.
- 3.Из 10 деталей 4 окрашены. Вероятность того, что окрашенная деталь тяжелее нормы, равна 0,3, а для неокрашенной 0,1. Взятая наудачу деталь оказалась тяжелее нормы. Найти вероятность того, что она окрашена.
- 4.В мастерской работает 6 моторов. Для каждого мотора вероятность перегрева к обеденному перерыву равна 0,8. Найти вероятность того, что к обеденному перерыву перегреется 4 мотора.
- 5.Вероятность того, что покупателю магазина обуви необходима обувь 36 размера, равна 0,3. Найти вероятность того, что из 2000 покупателей таких, которым необходима обувь 36 размера, будет не менее 570 и не более 630 человек.
- 6. В зимнюю сессию студент Иванов должен сдать 5 экзаменов. Вероятность того, что он не сдаст первый из них 0,2; второй 0,4; третий 0,5; четвертый 0,2; пятый 0,3. Определить вероятность того, что Иванов сдаст только четыре экзамена.

10.Решить задачу математической статистики

Компетенция	Индикатор достижения компетенции
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности	ОПК-1.1 Решает задачи, связанные с применением математического аппарата

1. Через каждый час измерялось напряжение тока в цепи. При этом были получены следующие значения (в вольтах):

227	229	215	230	232	223	220	218	222	226
219	222	221	227	226	209	212	207	219	220
220	216	220	221	224	211	215	218	219	220

Построить статистическое распределение и начертить полигон частот. Найти $\chi_{\hat{a}}$, $D_{\hat{a}}$, S^2 , S. Проверить гипотезу о нормальном распределении X .Построить доверительные интервалы для математического ожидания α , и для среднего квадратического отклонения α (γ =0,95).

- 2. 1)Найти выборочные средние $\overset{-}{x},\overset{-}{y}$ и выборочные дисперсии $\sigma_x^2,\;\sigma_y^2$;
- 2) построить корреляционное поле и предположить характер зависимости между X и Y;
- 3) установить зависимость между величинами (найти выборочный коэффициент корреляции и оценить его значимость при уровне значимости $\alpha = 0,05$;

4)найти уравнения прямых линий регрессии **Y** на **X** и **X** на **Y** по данной корреляционной таблице. Построить найденные прямые регрессии и корреляционное поле на одном чертеже.

Y	5	10	15	20	25	30	$n_{\scriptscriptstyle Y}$
10	2	3	-	-	-	-	5
20	-	7	3	-	-	-	10
30	-	-	2	50	2	-	54
40	-	-	1	10	6	-	17
50	-	-	-	4	7	3	14
$n_{_X}$	2	10	6	64	15	3	n = 100

4. Файл и/или БТЗ с полным комплектом оценочных материалов прилагается.